메뉴 건너뛰기




Volumn 33, Issue 2, 2012, Pages 173-181

Multi-task learning to rank for web search

Author keywords

Convergence analysis; Learning to rank; Multi task learning; Non parametric common structure

Indexed keywords

BASELINE METHODS; COMMON STRUCTURES; CONVERGENCE ANALYSIS; DIFFERENT DOMAINS; GLOBAL SEARCH; LEARNING TO RANK; LINEAR COMBINATIONS; MULTI-TASK LEARNING; MULTIPLE DOMAINS; MULTIPLE TASKS; NON-PARAMETRIC; NON-PARAMETRIC COMMON STRUCTURE; RANK FUNCTIONS; RANKING FUNCTIONS; REGRESSION FUNCTION; SEARCH RESULTS; SIGNIFICANT IMPACTS; TRAINING DATA; WEB SEARCHES;

EID: 81055138158     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2011.09.020     Document Type: Article
Times cited : (7)

References (36)
  • 4
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for bayesian multitask learning
    • B. Bakker, and T. Heskes Task clustering and gating for bayesian multitask learning J. Machine Learn. Res. 4 2003 83 99
    • (2003) J. Machine Learn. Res. , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 5
    • 0031187873 scopus 로고    scopus 로고
    • A Bayesian/Information Theoretic Model of Learning to Learn via Multiple Task Sampling
    • J. Baxter A bayesian/information theoretic model of learning to learn via multiple task sampling Machine Learn. 28 1 1997 7 39 (Pubitemid 127507168)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 7-39
    • Baxter, J.1
  • 9
    • 0031189914 scopus 로고    scopus 로고
    • Multitask Learning
    • R. Caruana Multitask learning Machine Learn. 28 1 1997 41 75 (Pubitemid 127507169)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 16
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J.H. Friedman Greedy function approximation: A gradient boosting machine The Ann. Statist. 29 5 2001 1189 1232 (Pubitemid 33405972)
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 20
    • 1842637192 scopus 로고    scopus 로고
    • Cumulated gain-based evaluation of IR techniques
    • DOI 10.1145/582415.582418
    • K. Järvelin, and J. Kekäläinen Cumulated gain-based evaluation of IR techniques ACM Trans. Inform. Systems 20 2002 422 446 (Pubitemid 44642296)
    • (2002) ACM Transactions on Information Systems , vol.20 , Issue.4 , pp. 422-446
    • Jarvelin, K.1    Kekalainen, J.2
  • 21
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • Joachims, T.; 2002. Optimizing search engines using clickthrough data. In: Proc. ACM SIGKDD.
    • (2002) Proc. ACM SIGKDD
    • Joachims, T.1
  • 24
    • 38149099603 scopus 로고    scopus 로고
    • Radial basis function network for multi-task learning
    • MIT Press Cambridge, MA
    • X. Liao, and L. Carin Radial basis function network for multi-task learning Neural Information Processing Systems vol. 18 2006 MIT Press Cambridge, MA 795 802
    • (2006) Neural Information Processing Systems , vol.18 VOL. , pp. 795-802
    • Liao, X.1    Carin, L.2
  • 28
    • 36448954244 scopus 로고    scopus 로고
    • Adarank: A boosting algorithm for information retrieval
    • Xu, J.; Li, H.; 2007. Adarank: A boosting algorithm for information retrieval. In: Proc. 30th ACM SIGIR.
    • (2007) Proc. 30th ACM SIGIR
    • Xu, J.1    Li, H.2
  • 33
    • 34547700482 scopus 로고    scopus 로고
    • Incorporating query difference for learning retrieval functions in world wide web search
    • DOI 10.1145/1183614.1183660, Proceedings of the 15th ACM Conference on Information and Knowledge Management, CIKM 2006
    • Zha, H.; Zheng, Z.; Fu, H.; and Sun, G.; 2006. Incorporating query difference for learning retrieval functions in world wide web search. In: Proc. 15th ACM CIKM Conf.; pp. 307-316. (Pubitemid 47208079)
    • (2006) International Conference on Information and Knowledge Management, Proceedings , pp. 307-316
    • Zha, H.1    Zheng, Z.2    Fu, H.3    Sun, G.4
  • 34
    • 26444493144 scopus 로고    scopus 로고
    • Boosting with early stopping: Convergence and consistency
    • T. Zhang, and B. Yu Boosting with early stopping: Convergence and consistency Ann. Statist. 33 2005 1538
    • (2005) Ann. Statist. , vol.33 , pp. 1538
    • Zhang, T.1    Yu, B.2
  • 35
    • 36448953520 scopus 로고    scopus 로고
    • A regression framework for learning ranking functions using relative relevance judgments
    • Zheng, Z.; Chen, K.; Sun, G.; Zha, H.; 2007. A regression framework for learning ranking functions using relative relevance judgments. In: Proc. 30th ACM SIGIR Conf.
    • (2007) Proc. 30th ACM SIGIR Conf.
    • Zheng, Z.1    Chen, K.2    Sun, G.3    Zha, H.4
  • 36
    • 85161963897 scopus 로고    scopus 로고
    • A general boosting method and its application to learning ranking functions for web search
    • MIT Press Cambridge, MA
    • Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and G. Sun A general boosting method and its application to learning ranking functions for web search Neural Information Processing Systems vol. 20 2008 MIT Press Cambridge, MA 1697 1704
    • (2008) Neural Information Processing Systems , vol.20 VOL. , pp. 1697-1704
    • Zheng, Z.1    Zha, H.2    Zhang, T.3    Chapelle, O.4    Chen, K.5    Sun, G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.