-
1
-
-
0000615832
-
On a new method of numerically integrating a system of nonlinear equations
-
Davidenko, D. (1953): On a new method of numerically integrating a system of nonlinear equations. Doklady Akad. Nauk SSSR, vol. 88, pp. 601-604.
-
(1953)
Doklady Akad. Nauk SSSR
, vol.88
, pp. 601-604
-
-
Davidenko, D.1
-
2
-
-
0023294196
-
Discrepancy principles for Tikhonov regularization of illposed problems leading to optimal convergence rates
-
Engl, H. W. (1987): Discrepancy principles for Tikhonov regularization of illposed problems leading to optimal convergence rates. J. Optim. Theory. Appl., vol. 52, pp. 209-215.
-
(1987)
J. Optim. Theory. Appl.
, vol.52
, pp. 209-215
-
-
Engl, H.W.1
-
3
-
-
1842812770
-
An inverse dual reciprocity method for hydraulic conductivity identification in steady groundwater flow
-
DOI 10.1016/j.advwatres.2004.02.001, PII S0309170804000168
-
Farcas A.; Elliott L.; Ingham D. B.; Lesnic D. (2004): An inverse dual reciprocity method for hydraulic conductivity identification in steady ground flow. Adv. Water Resou., vol. 27, pp. 223-235. (Pubitemid 38473858)
-
(2004)
Advances in Water Resources
, vol.27
, Issue.3
, pp. 223-235
-
-
Farcas, A.1
Elliott, L.2
Ingham, D.B.3
Lesnic, D.4
-
4
-
-
77952802835
-
The scalar homotopy method for solving non-linear obstacle problem
-
Fan, C.M.; Liu, C.-S.; Yeih, Y. C. and Chan, H. F. (2010): The Scalar Homotopy Method for Solving Non-Linear Obstacle Problem CMC: Computers, Materials, & Continua, Vol. 15, No. 1, pp. 67-86.
-
(2010)
CMC: Computers Materials & Continua
, vol.15
, Issue.1
, pp. 67-86
-
-
Fan, C.M.1
Liu, C.-S.2
Yeih, Y.C.3
Chan, H.F.4
-
5
-
-
84966214028
-
An a-posteriori parameter choices for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates
-
Gfrerer, H. (1987): An a-posteriori parameter choices for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Math. Comp., vol. 49, pp. 507-522.
-
(1987)
Math. Comp.
, vol.49
, pp. 507-522
-
-
Gfrerer, H.1
-
6
-
-
0040893030
-
A convergence analysis of the Landweber iteration for nonlinear ill-posed problems
-
Hanke, M.; Neubauer, A.; Scherzer, O. (1995): A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math., vol. 72, pp. 21-37.
-
(1995)
Numer. Math.
, vol.72
, pp. 21-37
-
-
Hanke, M.1
Neubauer, A.2
Scherzer, O.3
-
7
-
-
0000570697
-
Analysis of discrete ill-posed problems by means of the L-curve
-
Hansen, P. C. (1992): Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., vol. 34, pp. 561-580.
-
(1992)
SIAM Rev.
, vol.34
, pp. 561-580
-
-
Hansen, P.C.1
-
8
-
-
0001632418
-
The use of the L-curve in the regularization of discrete ill-posed problems
-
Hansen, P. C.; O'Leary, D. P. (1993): The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput., vol. 14, pp. 1487-1503.
-
(1993)
SIAM J. Sci. Comput.
, vol.14
, pp. 1487-1503
-
-
Hansen, P.C.1
O'leary, D.P.2
-
9
-
-
0035217753
-
A discrete scheme of Landweber iteration for solving nonlinear ill-posed problems
-
DOI 10.1006/jmaa.2000.7090, PII S0022247X00970902
-
Jin, Q. (2001): A discrete scheme of Landweber iteration for solving nonlinear ill-posed problems. J. Math. Anal. Appl., vol. 253, pp. 187-203. (Pubitemid 33380882)
-
(2001)
Journal of Mathematical Analysis and Applications
, vol.253
, Issue.1
, pp. 187-203
-
-
Jin, Q.1
Amato, U.2
-
10
-
-
78649506602
-
Solving non-linear algebraic equations by a scalar Newton-homotopy continuation method
-
Ku, C.-Y.; Yeih, W.; Liu, C.-S. (2010): Solving non-linear algebraic equations by a scalar Newton-homotopy continuation method. Int. J. Nonlinear Sci. Numer. Simul., vol. 11, pp. 435-450.
-
(2010)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.11
, pp. 435-450
-
-
Ku, C.-Y.1
Yeih, W.2
Liu, C.-S.3
-
11
-
-
0001410167
-
Iterative choices of regularization parameters in linear inverse problems
-
Kunisch, K.; Zou, J. (1998): Iterative choices of regularization parameters in linear inverse problems. Inverse Problems, vol. 14, pp. 1247-1264. (Pubitemid 128557070)
-
(1998)
Inverse Problems
, vol.14
, Issue.5
, pp. 1247-1264
-
-
Kunisch, K.1
Zou, J.2
-
12
-
-
0000518587
-
An iteration formula for Fredholm integral equations of the first kind
-
Landweber, L. (1951): An iteration formula for Fredholm integral equations of the first kind. Amer. J. Math., vol. 73, pp. 615-624.
-
(1951)
Amer. J. Math.
, vol.73
, pp. 615-624
-
-
Landweber, L.1
-
13
-
-
34249298693
-
R-K type Landweber method for nonlinear ill-posed problems
-
DOI 10.1016/j.cam.2006.07.022, PII S0377042706004729
-
Li, L.; Han, B.; Wang, W. (2007): R-K type Landweber method for nonlinear ill-posed problems. J. Comp. Appl. Math., vol. 206, pp. 341-357. (Pubitemid 46817763)
-
(2007)
Journal of Computational and Applied Mathematics
, vol.206
, Issue.1
, pp. 341-357
-
-
Li, L.1
Han, B.2
Wang, W.3
-
14
-
-
0034188108
-
A Jordan algebra and dynamic system with associator as vector field
-
Liu, C.-S. (2000a): A Jordan algebra and dynamic system with associator as vector field. Int. J. Non-Linear Mech., vol. 35, pp. 421-429.
-
(2000)
Int. J. Non-Linear Mech.
, vol.35
, pp. 421-429
-
-
Liu, C.-S.1
-
15
-
-
0034274977
-
Intermittent transition to quasiperiodicity demonstrated via a circular differential equation
-
Liu, C.-S. (2000b): Intermittent transition to quasiperiodicity demonstrated via a circular differential equation. Int. J. Non-Linear Mech., vol. 35, pp. 931-946.
-
(2000)
Int. J. Non-Linear Mech.
, vol.35
, pp. 931-946
-
-
Liu, C.-S.1
-
16
-
-
33947130651
-
A Study of Type i Intermittency of A Circular Differential Equation under A Discontinuous Right-hand Side
-
Liu, C.-S. (2007): A study of type I intermittency of a circular differential equation under a discontinuous right-hand side. J. Math. Anal. Appl., vol. 331, pp. 547-566.
-
(2007)
J. Math. Anal. Appl.
, vol.331
, pp. 547-566
-
-
Liu, C.-S.1
-
17
-
-
77954550806
-
The fictitious time integration method to solve the spaceand time-fractional burgers equations CMC: Computers
-
Liu, C.-S. (2010a): The Fictitious Time Integration Method to Solve the Spaceand Time-Fractional Burgers Equations CMC: Computers, Materials, & Continua, Vol. 15, No. 3, pp. 221-240.
-
(2010)
Materials, & Continua
, vol.15
, Issue.3
, pp. 221-240
-
-
Liu, C.-S.1
-
18
-
-
78650016688
-
A Lie-Group Adaptive Method for Imaging a Space-Dependent Rigidity Coefficient in an Inverse Scattering Problem of Wave Propagation
-
Liu, C.-S. (2010b): A Lie-Group Adaptive Method for Imaging a Space-Dependent Rigidity Coefficient in an Inverse Scattering Problem of Wave Propagation CMC: Computers, Materials, & Continua, Vol. 18, No. 1, pp. 1-20.
-
(2010)
CMC: Computers, Materials, & Continua
, vol.18
, Issue.1
, pp. 1-20
-
-
Liu, C.-S.1
-
19
-
-
76249086623
-
A highly accurate technique for interpolations using very high-order polynomials, and its applications to some ill-posed linear problems
-
Liu, C.-S.; Atluri, S. N. (2009): A highly accurate technique for interpolations using very high-order polynomials, and its applications to some ill-posed linear problems. CMES: Computer Modeling in Engineering and Science, vol. 43, pp. 253-276.
-
(2009)
CMES: Computer Modeling in Engineering and Science
, vol.43
, pp. 253-276
-
-
Liu, C.-S.1
Atluri, S.N.2
-
20
-
-
79955519618
-
Simple "residual-norm" based algorithms, for the solution of a large system of non-linear algebraic equations, which converge faster than the Newton's method
-
Liu, C.-S.; Atluri, S. N. (2011a): Simple "residual-norm" based algorithms, for the solution of a large system of non-linear algebraic equations, which converge faster than the Newton's method. CMES: Computer Modeling in Engineering and Science, vol. 71, pp. 279-304.
-
(2011)
CMES: Computer Modeling in Engineering and Science
, vol.71
, pp. 279-304
-
-
Liu, C.-S.1
Atluri, S.N.2
-
21
-
-
79959812718
-
A method for solving a system of nonlinear algebraic equations, F(x)=0, using the system of ODEs with an optimum a in ?x= l[aF+(1a)BTF]; Bi j = ¶Fi=¶ xj
-
Liu, C.-S.; Atluri, S. N. (2011b): A method for solving a system of nonlinear algebraic equations, F(x)=0, using the system of ODEs with an optimum a in ?x= l[aF+(1a)BTF]; Bi j = ¶Fi=¶ xj. CMES: Computer Modeling in Engineering and Science, vol. 73, pp. 395-431.
-
(2011)
CMES: Computer Modeling in Engineering and Science
, vol.73
, pp. 395-431
-
-
Liu, C.-S.1
Atluri, S.N.2
-
22
-
-
77949806014
-
A scalar homotopy method for solving an over/under-determined system of non-linear algebraic equations
-
Liu, C.-S.; Yeih,W.; Kuo, C.-L.; Atluri, S. N. (2009): A scalar homotopy method for solving an over/under-determined system of non-linear algebraic equations. CMES: Computer Modeling in Engineering and Science, vol. 53, pp. 47-71.
-
(2009)
CMES: Computer Modeling in Engineering and Science
, vol.53
, pp. 47-71
-
-
Liu, C.-S.1
Yeih, W.2
Kuo, C.-L.3
Atluri, S.N.4
-
23
-
-
0001595602
-
Comparisons of parameter choice methods for regularization with discrete noisy data
-
Lukas, M. A. (1998): Comparison of parameter choice methods for regularization with discrete noisy data. Inverse Problems, vol. 14, pp. 161-184. (Pubitemid 128555639)
-
(1998)
Inverse Problems
, vol.14
, Issue.1
, pp. 161-184
-
-
Lukas, M.A.1
-
24
-
-
0011371791
-
On regularization of ill-posed problems and selection of regularization parameter
-
Morozov, V. A. (1966): On regularization of ill-posed problems and selection of regularization parameter. J. Comp. Math. Phys., vol. 6, pp. 170-175.
-
(1966)
J. Comp. Math. Phys.
, vol.6
, pp. 170-175
-
-
Morozov, V.A.1
-
26
-
-
0034381932
-
On Landweber iteration for nonlinear ill-posed problem in Hilbert scales
-
Neubauer, A. (2000): On Landweber iteration for nonlinear ill-posed problem in Hilbert scales. Numer. Math., vol. 85, pp. 309-328.
-
(2000)
Numer. Math.
, vol.85
, pp. 309-328
-
-
Neubauer, A.1
-
28
-
-
0032687625
-
A modified Landweber method for inverse problems
-
Ramlau, R. A. (1998): A modified Landweber method for inverse problems. Numer. Funct. Anal. Optim., vol. 20, pp. 79-98.
-
(1998)
Numer. Funct. Anal. Optim.
, vol.20
, pp. 79-98
-
-
Ramlau, R.A.1
-
29
-
-
23244453192
-
Regularization of ill-posed problems in Banach spaces: Convergence rates
-
DOI 10.1088/0266-5611/21/4/007, PII S0266561105930761
-
Resmerita, E. (2005): Regularization of ill-posed problems in Banach spaces: convergence rates. Inverse Problems, vol. 21, pp. 1303-1314. (Pubitemid 41090541)
-
(2005)
Inverse Problems
, vol.21
, Issue.4
, pp. 1303-1314
-
-
Resmerita, E.1
-
30
-
-
0010014032
-
Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems
-
Scherzer, O. (1995): Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems. J. Math. Anal. Appl., vol. 194, pp. 911-934.
-
(1995)
J. Math. Anal. Appl.
, vol.194
, pp. 911-934
-
-
Scherzer, O.1
-
31
-
-
0032122772
-
A modified Landweber iteration for solving parameter estimation problems
-
Scherzer, O. (1998): A modified Landweber iteration for solving parameter estimation problems. Appl. Math. Optim., vol. 38, pp. 45-68. (Pubitemid 128621126)
-
(1998)
Applied Mathematics and Optimization
, vol.38
, Issue.1
, pp. 45-68
-
-
Scherzer, O.1
-
33
-
-
37249050781
-
A Runge-Kutta type modified Landweber method for nonlinear ill-posed operator equations
-
DOI 10.1016/j.cam.2006.12.021, PII S0377042706008016
-
Wang, W.; Han, B.; Li, L. (2008): A Runge-Kutta type modified Landweber method for nonlinear ill-posed operator equations. J. Comp. Appl. Math., vol. 212, pp. 457-468. (Pubitemid 350266226)
-
(2008)
Journal of Computational and Applied Mathematics
, vol.212
, Issue.2
, pp. 457-468
-
-
Wang, W.1
Han, B.2
Li, L.3
-
34
-
-
0035304062
-
Fast realization algorithms for determining regularization parameters in linear inverse problems
-
DOI 10.1088/0266-5611/17/2/308, PII S0266561101137068
-
Wang, Y.; Xiao, T. (2001): Fast realization algorithms for determining regularization parameters in linear inverse problems. Inverse Problems, vol. 17, pp. 281-291. (Pubitemid 32419738)
-
(2001)
Inverse Problems
, vol.17
, Issue.2
, pp. 281-291
-
-
Wang, Y.-F.1
Xiao, T.-Y.2
-
35
-
-
0036608496
-
An improved model function method for choosing regularization parameters in linear inverse problems
-
DOI 10.1088/0266-5611/18/3/307, PII S0266561102334956
-
Xie, J.; Zou, J. (2002): An improved model function method for choosing regularization parameters in linear inverse problems. Inverse Problems, vol. 18, pp. 631-643. (Pubitemid 34720662)
-
(2002)
Inverse Problems
, vol.18
, Issue.3
, pp. 631-643
-
-
Xie, J.1
Zou, J.2
|