메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2809-2812

Estimation of impervious surface based on integrated analysis of classification and regression by using SVM

Author keywords

estimation; impervious surface area; impervious surface percentage; support vector machine

Indexed keywords

CLASS-BASED; CLASSIFICATION RESULTS; ENVIRONMENT RESEARCH; FUTURE RESEARCH DIRECTIONS; HIGH RESOLUTION IMAGE; IMPERVIOUS SURFACE; IMPERVIOUS SURFACE AREA; INTEGRATED ANALYSIS; KEY PARAMETERS; NONLINEAR CHARACTERISTICS; QUICKBIRD; REGRESSION MODEL; SPATIAL INPUTS; SPECTRAL FEATURE; SUPPORT VECTOR; SVM CLASSIFICATION; SVM MODEL; TASSELED CAP; TESTING SAMPLES; TIANJIN; TM IMAGE; TRAINING SAMPLE; TYPICAL SAMPLES; URBAN AREAS;

EID: 80955136588     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IGARSS.2011.6049864     Document Type: Conference Paper
Times cited : (7)

References (15)
  • 1
    • 67349274187 scopus 로고    scopus 로고
    • Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data
    • Esch T, Himmler V,Schorcht G. 2009 .Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data. Remote Sensing of Environment, 113(8):1678-1690
    • (2009) Remote Sensing of Environment , vol.113 , Issue.8 , pp. 1678-1690
    • Esch, T.1    Himmler, V.2    Schorcht, G.3
  • 2
    • 67849114029 scopus 로고    scopus 로고
    • Estimating impervious surface from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural network
    • Hu X F,Wen Q H.2009.Estimating impervious surface from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural network. Remote Sensing of Environment,113():2089-1102
    • (2009) Remote Sensing of Environment , vol.113 , pp. 2089-11102
    • Hu, X.F.1    Wen, Q.H.2
  • 3
    • 33745070979 scopus 로고    scopus 로고
    • Sub-pixel estimation of urban land cover components with linear mixture model analysis and Landsat Thematic Mapper imagery
    • DOI 10.1080/01431160500300222, PII V188502201124854
    • Lee S, Lathrop R. 2005.Sub-pixel estimation of urban land cover components with linear mixture model analysis and Landsat Thematic Mapper imagery. International Journal of Remote Sensing, 26(22):4885-4905. (Pubitemid 43878420)
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.22 , pp. 4885-4905
    • Lee, S.1    Lathrop Jr., R.G.2
  • 4
    • 80955156386 scopus 로고    scopus 로고
    • Use of impervious surface in urban land-use classification
    • Lu D, Weng Q.2008. Use of impervious surface in urban land-use classification. Remote Sensing of Environment,24(6):1273-1286.
    • (2008) Remote Sensing of Environment , vol.24 , Issue.6 , pp. 1273-1286
    • Lu, D.1    Weng, Q.2
  • 5
    • 77949489187 scopus 로고    scopus 로고
    • Integrating intermediate inputs from partially classified images within a hybrid classification framework: An impervious surface estimation example
    • Luo L, Mountrakis G.2010. Integrating intermediate inputs from partially classified images within a hybrid classification framework: An impervious surface estimation example. Remote Sensing of Environment,114(6):1220-1229
    • (2010) Remote Sensing of Environment , vol.114 , Issue.6 , pp. 1220-1229
    • Luo, L.1    Mountrakis, G.2
  • 6
    • 77955315839 scopus 로고    scopus 로고
    • Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat Imagery Change Detection Methods
    • George X & Collin H.2010. Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat Imagery Change Detection Methods. Remote Sensing of Environment,114():1676-1686.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 1676-1686
    • George, X.1    Collin, H.2
  • 7
    • 79952069751 scopus 로고    scopus 로고
    • Enhancing and replacing spectral information with intermediate structural inputs:A case study on impervious surface detection
    • Giorgos Mountrakis, Li Luo.2011. Enhancing and replacing spectral information with intermediate structural inputs:A case study on impervious surface detection. Remote Sensing of Environment,115():1162-1170
    • (2011) Remote Sensing of Environment , vol.115 , pp. 1162-1170
    • Mountrakis, G.1    Luo, L.2
  • 8
    • 33845914584 scopus 로고    scopus 로고
    • Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil
    • Powell R L, Roberts D A, Dennison P E and Hess L L,2007, Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sensing of Environment, 106():253-267
    • (2007) Remote Sensing of Environment , vol.106 , pp. 253-267
    • Powell, R.L.1    Roberts, D.A.2    Dennison, P.E.3    Hess, L.L.4
  • 9
    • 39749167939 scopus 로고    scopus 로고
    • Spectral mixture analysis for mapping abundance of urban surface components from the Terra/ASTER data
    • DOI 10.1016/j.rse.2007.07.005, PII S0034425707003318
    • Pu R,Gong P,Ryo M and Todashi S.2008.Spectral mixture analysis for mapping aboundance of urban surface components from the Terra/ASTER data. Remote Sensing of Environment, 112(3):939-954 (Pubitemid 351296241)
    • (2008) Remote Sensing of Environment , vol.112 , Issue.3 , pp. 939-954
    • Pu, R.1    Gong, P.2    Michishita, R.3    Sasagawa, T.4
  • 10
    • 79952070569 scopus 로고    scopus 로고
    • Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery
    • Soe W. M., Patricia G, Anthony B, Susanne G.C., and Weng Q.H. 2011. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment.115():1145-1161.
    • (2011) Remote Sensing of Environment , vol.115 , pp. 1145-1161
    • Soe, W.M.1    Patricia, G.2    Anthony, B.3    Susanne, G.C.4    Weng, Q.H.5
  • 11
    • 0032594959 scopus 로고    scopus 로고
    • An Overview of StatisticalLearning Theory
    • Vapnik V N. 1999 An Overview of StatisticalLearning Theory . IEEE Transactions on Neural Networks, 10(5):988-999
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 12
    • 0037381086 scopus 로고    scopus 로고
    • Estimating impervious surface distribution by spectral mixture analysis
    • DOI 10.1016/S0034-4257(02)00136-0, PII S0034425702001360
    • Wu C and Murray A T. 2003. Estimating impervious surface distri-bution by spectral mixture analysis. Remote Sensing of Environment, 84(4): 493-505 (Pubitemid 36360511)
    • (2003) Remote Sensing of Environment , vol.84 , Issue.4 , pp. 493-505
    • Wu, C.1    Murray, A.T.2
  • 13
    • 7444231656 scopus 로고    scopus 로고
    • Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery
    • DOI 10.1016/j.rse.2004.08.003, PII S0034425704002421
    • Wu C.2004. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sensing of Environment, 93(4): 480-492 (Pubitemid 39444375)
    • (2004) Remote Sensing of Environment , vol.93 , Issue.4 , pp. 480-492
    • Wu, C.1
  • 14
    • 0042961504 scopus 로고    scopus 로고
    • An approach for mapping large-area impervious surfaces-synergistic use of Landsat-7 ETM+ and high spatial resolution imagery
    • Yang L M, Huang C Q, Homer C G, Wylie B K and Coan M J. 2003. An approach for mapping large-area impervious surfaces-synergistic use of Landsat-7 ETM+ and high spatial resolution imagery. Canadian Journal of Remote Sensing, 29(2): 230-240
    • (2003) Canadian Journal of Remote Sensing , vol.29 , Issue.2 , pp. 230-240
    • Yang, L.M.1    Huang, C.Q.2    Homer, C.G.3    Wylie, B.K.4    Coan, M.J.5
  • 15
    • 21044434492 scopus 로고    scopus 로고
    • Use of satellite-derived landscape imperviousness index to characterize urban spatial growth
    • DOI 10.1016/j.compenvurbsys.2005.01.005, PII S0198971505000049
    • Yang X, Liu Z.2005.Use of satellite-derived landscape imperviousness index to characterize urban spatial growth. International Journal of Remote Sensing,29(5):524-540. (Pubitemid 40875940)
    • (2005) Computers, Environment and Urban Systems , vol.29 , Issue.5 SPEC. ISS. , pp. 524-540
    • Yang, X.1    Liu, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.