-
2
-
-
85032751930
-
Spectral unmixing
-
Jan.
-
N. Keshava and J. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002.
-
(2002)
IEEE Signal Process. Mag.
, vol.19
, Issue.1
, pp. 44-57
-
-
Keshava, N.1
Mustard, J.2
-
3
-
-
78649723716
-
Hyperspectral unmixing: Geometrical, statistical, and sparse regression-based approaches
-
J. M. Bioucas-Dias and A. Plaza, "Hyperspectral unmixing: Geometrical, statistical, and sparse regression-based approaches," in Proc. of SPIE - Image and Signal Processing for Remote Sensing XVI, Toulouse, France, Sept. 20, 2010, vol. 7830.
-
Proc. of SPIE - Image and Signal Processing for Remote Sensing XVI, Toulouse, France, Sept. 20, 2010
, vol.7830
-
-
Bioucas-Dias, J.M.1
Plaza, A.2
-
4
-
-
33847733865
-
Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
-
DOI 10.1109/TGRS.2006.888466
-
L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007. (Pubitemid 46375748)
-
(2007)
IEEE Transactions on Geoscience and Remote Sensing
, vol.45
, Issue.3
, pp. 765-777
-
-
Miao, L.1
Qi, H.2
-
5
-
-
72049109460
-
A variable splitting augmented Lagrangian approach to linear spectral unmixing
-
J. M. B. Dias, "A variable splitting augmented Lagrangian approach to linear spectral unmixing," in Proc. First IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Grenoble, France, Aug. 26-28, 2009.
-
Proc. First IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Grenoble, France, Aug. 26-28, 2009
-
-
Dias, J.M.B.1
-
6
-
-
70350488509
-
A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
-
Nov.
-
T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K.Ma, "A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Proces., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
-
(2009)
IEEE Trans. Signal Proces.
, vol.57
, Issue.11
, pp. 4418-4432
-
-
Chan, T.-H.1
Chi, C.-Y.2
Huang, Y.-M.3
Ma, W.-K.4
-
7
-
-
0028427066
-
Minimum-volume transforms for remotely sensed data
-
May
-
M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994.
-
(1994)
IEEE Trans. Geosci. Remote Sens.
, vol.32
, Issue.3
, pp. 542-552
-
-
Craig, M.D.1
-
8
-
-
0033310314
-
N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
-
M. E.Winter, "N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. SPIE Conf. Imaging Spectrometry, Pasadena, CA, Oct. 1999, pp. 266-275.
-
Proc. SPIE Conf. Imaging Spectrometry, Pasadena, CA, Oct. 1999
, pp. 266-275
-
-
Winter, M.E.1
-
9
-
-
52349105056
-
Sequential N-FINDR algorithms
-
Aug.
-
C.-C. Wu, S. Chu, and C.-I Chang, "Sequential N-FINDR algorithms," Proc. of SPIE, vol. 7086, Aug. 2008.
-
(2008)
Proc. of SPIE
, vol.7086
-
-
Wu, C.-C.1
Chu, S.2
Chang, C.-I.3
-
10
-
-
72049127543
-
Hyperspectral unmixing from a convex analysis and optimization perspective
-
T.-H. Chan, W.-K.Ma, C.-Y. Chi, and A. Ambikapathi, "Hyperspectral unmixing from a convex analysis and optimization perspective," in Proc. First IEEE WHISPERS, Grenoble, France, August 26-28, 2009.
-
Proc. First IEEE WHISPERS, Grenoble, France, August 26-28, 2009
-
-
Chan, T.-H.1
Ma, W.-K.2
Chi, C.-Y.3
Ambikapathi, A.4
-
11
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
Apr.
-
J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
13
-
-
80455174042
-
A simplex volume maximization framework for hyperspectral endmember extraction
-
to appear
-
T.-H. Chan,W.-K.Ma, A. Ambikapathi, and C.-Y. Chi, "A simplex volume maximization framework for hyperspectral endmember extraction," to appear in IEEE Trans. on Geoscience and Remote Sensing - Special Issue on Spectral Unmixing of Remotely Sensed Data, 2011.
-
(2011)
IEEE Trans. on Geoscience and Remote Sensing - Special Issue on Spectral Unmixing of Remotely Sensed Data
-
-
Chan, T.-H.1
Ma, W.-K.2
Ambikapathi, A.3
Chi, C.-Y.4
|