메뉴 건너뛰기




Volumn 13, Issue SUPPL., 2011, Pages 1223-1232

Research notes vegetation species determination using spectral characteristics and artificial neural network (SCANN)

Author keywords

Image classification; Neural networks; Spectral characteristics; Vegetation

Indexed keywords

DAPHNE VIRUS S;

EID: 80855148946     PISSN: 16807073     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Note
Times cited : (8)

References (21)
  • 1
    • 77956549868 scopus 로고    scopus 로고
    • The Use of TM Thermal Band for Land Cover/Land Use Mapping in Two Different Environmental Conditions of Iran
    • Alavi Panah, S. K., De Dapper, M, Goosenes, R. and Massoudi, M. 2001. The Use of TM Thermal Band for Land Cover/Land Use Mapping in Two Different Environmental Conditions of Iran, J. Agric. Sci. Technol., 3: 27-36
    • (2001) J. Agric. Sci. Technol , vol.3 , pp. 27-36
    • Alavi-Panah, S.K.1    de Dapper, M.2    Goosenes, R.3    Massoudi, M.4
  • 3
    • 80855135710 scopus 로고    scopus 로고
    • Department of Geography, University of Cincinnati, USA
    • Beck, R. 2003. EO1 User Guide Ver. 2003. Department of Geography, University of Cincinnati, USA.
    • (2003) EO1 User Guide Ver. 2003
    • Beck, R.1
  • 4
    • 0002416237 scopus 로고    scopus 로고
    • Post-aTREM Polishing of AVIRIS Apparent Reflectance Data Using EFFORT: A Lesson in Accuracy Versus Precision
    • Boardman, J. W. 1998. Post-aTREM Polishing of AVIRIS Apparent Reflectance Data Using EFFORT: A Lesson in Accuracy Versus Precision. In Summaries of the Seventh JPL Airborne Earth Science Workshop, 1: 53.
    • (1998) Summaries of the Seventh JPL Airborne Earth Science Workshop , vol.1 , pp. 53
    • Boardman, J.W.1
  • 7
    • 0005690050 scopus 로고
    • Classification of Multi-spectral, Multi-temporal Multi-source Spatial Data Using Artificial Neural Networks
    • Civco, D. L. and Waug, Y. 1994. Classification of Multi-spectral, Multi-temporal Multi-source Spatial Data Using Artificial Neural Networks. In Proceeding of the ASPRS, Annual Convention, Reno, 1994, PP. 123-133.
    • (1994) Proceeding of the ASPRS, Annual Convention, Reno , pp. 123-133
    • Civco, D.L.1    Waug, Y.2
  • 9
    • 80855151027 scopus 로고    scopus 로고
    • FLAASH Module User guide. ENVI FLAASH Version 4.2 August, 2005 Edition
    • FLAASH Module User guide. ENVI FLAASH Version 4.2 August, 2005 Edition
  • 12
    • 33947099470 scopus 로고    scopus 로고
    • Artificial Neural Network Model as a Data Analysis Tool in Precision Farming
    • Irmak, A., Jones, J. W., Batchlor, W. D., Irmak, S., Bbootek, K. J. and Paz, J. O. 2006. Artificial Neural Network Model as a Data Analysis Tool in Precision Farming. Am. Soc. Agri. Eng., 49(6): 2027-2037
    • (2006) Am. Soc. Agri. Eng , vol.49 , Issue.6 , pp. 2027-2037
    • Irmak, A.1    Jones, J.W.2    Batchlor, W.D.3    Irmak, S.4    Bbootek, K.J.5    Paz, J.O.6
  • 14
    • 0001130002 scopus 로고    scopus 로고
    • Multi-layer Neural Networks for Image Analysis of Agricultural Products
    • Jayas D. S. and Paliwal, J. 2000. Multi-layer Neural Networks for Image Analysis of Agricultural Products. J. agric. Engng Res., 77(2): 119-128
    • (2000) J. Agric. Engng Res , vol.77 , Issue.2 , pp. 119-128
    • Jayas, D.S.1    Paliwal, J.2
  • 15
    • 46249093423 scopus 로고    scopus 로고
    • A Method in Extracting Vegetation Quality Parameters Using Hyperion Images, with Application to Precision Farming
    • Mobasheri, M. R., Rezaei, Y. and Valadan Zoej, M. J. 2007. A Method in Extracting Vegetation Quality Parameters Using Hyperion Images, with Application to Precision Farming. IDOST Publications, World App. Sci. J., 2(5): 476-483.
    • (2007) IDOST Publications, World App. Sci. J , vol.2 , Issue.5 , pp. 476-483
    • Mobasheri, M.R.1    Rezaei, Y.2    Valadan-Zoej, M.J.3
  • 16
    • 1242265184 scopus 로고    scopus 로고
    • Detecting Sugarcane 'Orange Rust' Disease Using EO-1 Hyperion Hyperspectral Imagers
    • Pan, A., Held, A., Phinn, S. and Markley, J. 2004. Detecting Sugarcane 'Orange Rust' Disease Using EO-1 Hyperion Hyperspectral Imagers. Int. J. Remote Sensing, 489 - 498
    • (2004) Int. J. Remote Sensing , pp. 489-498
    • Pan, A.1    Held, A.2    Phinn, S.3    Markley, J.4
  • 17
    • 0029341018 scopus 로고
    • A Detailed Comparison of Backpropagation Neural Network and Maximum-likelihood Classifiers for Urban Land Use Classification
    • IEEE Transactions on
    • Paola, J. D. and Schowengerdt, R. A. 1995. A Detailed Comparison of Backpropagation Neural Network and Maximum-likelihood Classifiers for Urban Land Use Classification. Geoscience and Remote Sensing, IEEE Transactions on 33(4): 981 - 996
    • (1995) Geoscience and Remote Sensing , vol.33 , Issue.4 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 18
    • 0036893997 scopus 로고    scopus 로고
    • Radiative Transfer Codes Applied to Hyperspectral Data for the Retrieval of Surface Reflectance
    • Staenz, K., Secker, J., Gao, B.-C., Davis, C., and Nadeau, C. 2002. Radiative Transfer Codes Applied to Hyperspectral Data for the Retrieval of Surface Reflectance. ISPRS J. Photogramm. Remote Sens., 57:194-203.
    • (2002) ISPRS J. Photogramm. Remote Sens , vol.57 , pp. 194-203
    • Staenz, K.1    Secker, J.2    Gao, B.-C.3    Davis, C.4    Nadeau, C.5
  • 20
    • 72349087537 scopus 로고    scopus 로고
    • USGS Digital Spectral Library
    • USGS Digital Spectral Library: http://speclab.cr.usgs.gov/spectral-lib.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.