메뉴 건너뛰기




Volumn 27, Issue 4, 2011, Pages 381-391

Task scheduling with ANN-based temperature prediction in a data center: A simulation-based study

Author keywords

Data center; Green computing; Workload scheduling

Indexed keywords

A-THERMAL; ARTIFICIAL NEURAL NETWORK; DATA CENTERS; GREEN COMPUTING; HARDWARE FAILURES; HEAT SOURCES; HIGH TEMPERATURE; MACHINE LEARNING TECHNIQUES; MATRIX; NORMAL OPERATIONS; PREDICTION METHODOLOGY; SIMULATION RESULT; SIMULATION STUDIES; SIMULATION-BASED; TASK-SCHEDULING; TEMPERATURE PREDICTION; WORKLOAD MANAGEMENT; WORKLOAD SCHEDULING;

EID: 80855133469     PISSN: 01770667     EISSN: 14355663     Source Type: Journal    
DOI: 10.1007/s00366-011-0211-4     Document Type: Article
Times cited : (58)

References (34)
  • 1
    • 80855162792 scopus 로고    scopus 로고
    • U.S. Environmental Protection Agency U.S. Environmental Protection Agency
    • U.S. Environmental Protection Agency (2007) Report to Congress on Server and Data Center Energy Efficiency. Technical Report, U.S. Environmental Protection Agency. Available at http://www.energystar.gov/ia/partners/prod- development/downloads/EPA-Datacenter-Report-Congress-Final1.pdf
    • (2007) Report to Congress on Server and Data Center Energy Efficiency. Technical Report
  • 4
    • 80855152665 scopus 로고    scopus 로고
    • Best Practices for Energy Efficiency in Microsoft Data Center Operations, Fact Sheet
    • Best Practices for Energy Efficiency in Microsoft Data Center Operations, Fact Sheet (2008). http://download.microsoft.com/download/a/7/b/a7b72ab1-ca17- 4589-923a-83b0ff57be6d/Energy-Efficiency-Best-Practices-in-Microsoft-Data- Center-Operations-CeBIT.doc
    • (2008)
  • 8
    • 84984030295 scopus 로고
    • Acceleration and time to fail
    • 10.1002/qre.4680020409
    • PW Hale 1986 Acceleration and time to fail Qual Reliab Eng Int 2 4 259 262 10.1002/qre.4680020409
    • (1986) Qual Reliab Eng Int , vol.2 , Issue.4 , pp. 259-262
    • Hale, P.W.1
  • 11
    • 34247560899 scopus 로고    scopus 로고
    • Thermo-fluids provisioning of a high performance high density data center
    • DOI 10.1007/s10619-005-0413-0, High Density Data Centers
    • Abdlmonem H, Patel CD (2007) Thermo-fluids provisioning of a high performance high density data center. Distrib Parallel Databases 21(2-3):227-238 (Pubitemid 46673098)
    • (2007) Distributed and Parallel Databases , vol.21 , Issue.2-3 , pp. 227-238
    • Beitelmal, A.H.1    Patel, C.D.2
  • 12
    • 54249125817 scopus 로고    scopus 로고
    • Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: A cyber-physical approach
    • Tang Q, Gupta SKS, Varsamopoulos G (2008) Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: a cyber-physical approach. IEEE Trans Parallel Distrib Syst 19(11):1458-1472
    • (2008) IEEE Trans Parallel Distrib Syst , vol.19 , Issue.11 , pp. 1458-1472
    • Tang, Q.1    Sks, G.2    Varsamopoulos, G.3
  • 14
    • 34748874607 scopus 로고    scopus 로고
    • Software architecture for dynamic thermal management in datacenters
    • Mukherjee T, Tang Q, Ziesman C, Gupta SKS, Cayton P (2007) Software architecture for dynamic thermal management in datacenters. In: COMSWARE
    • (2007) COMSWARE
    • Mukherjee, T.1    Tang, Q.2    Ziesman, C.3    Sks, G.4    Cayton, P.5
  • 15
    • 53349172421 scopus 로고    scopus 로고
    • Thermal-aware task scheduling for data centers through minimizing heat recirculation
    • Tang Q, Gupta SKS, Varsamopoulos G (2007) Thermal-aware task scheduling for data centers through minimizing heat recirculation. In: CLUSTER, pp 129-138
    • (2007) CLUSTER , pp. 129-138
    • Tang, Q.1    Sks, G.2    Varsamopoulos, G.3
  • 17
    • 33748055767 scopus 로고    scopus 로고
    • InteMon: Continuous mining of sensor data in large-scale self-infrastructures
    • DOI 10.1145/1151374.1151384
    • Hoke E, Sun J, Strunk JD, Ganger GR, Faloutsos C (2006) InteMon: continuous mining of sensor data in large-scale self-infrastructures. Oper Syst Rev 40(3):38-44 (Pubitemid 44299044)
    • (2006) Operating Systems Review (ACM) , vol.40 , Issue.3 , pp. 38-44
    • Hoke, E.1    Sun, J.2    Strunk, J.D.3    Ganger, G.R.4    Faloutsos, C.5
  • 18
    • 34547466206 scopus 로고    scopus 로고
    • Mercury and freon: Temperature emulation and management for server systems
    • Heath T, Centeno AP, George P, Ramos L, Jaluria Y (2006) Mercury and freon: temperature emulation and management for server systems. In: ASPLOS, pp 106-116
    • (2006) ASPLOS , pp. 106-116
    • Heath, T.1    Centeno, A.P.2    George, P.3    Ramos, L.4    Jaluria, Y.5
  • 19
    • 57749193513 scopus 로고    scopus 로고
    • C-Oracle: Predictive thermal management for data centers
    • Ramos L, Bianchini R (2008) C-Oracle: predictive thermal management for data centers. In: HPCA, pp 111-122
    • (2008) HPCA , pp. 111-122
    • Ramos, L.1    Bianchini, R.2
  • 21
    • 52249084545 scopus 로고    scopus 로고
    • Dynamic thermal management through task scheduling
    • Yang J, Zhou X, Chrobak M, Zhang Y, Jin L (2008) Dynamic thermal management through task scheduling. In: ISPASS, pp 191-201
    • (2008) ISPASS , pp. 191-201
    • Yang, J.1    Zhou, X.2    Chrobak, M.3    Zhang, Y.4    Jin, L.5
  • 22
    • 48249083775 scopus 로고    scopus 로고
    • Algorithms for temperature-aware task scheduling in microprocessor systems
    • Chrobak M, Dürr C, Hurand M, Robert J (2008) Algorithms for temperature-aware task scheduling in microprocessor systems. In: AAIM, pp 120-130
    • (2008) AAIM , pp. 120-130
    • Chrobak M, D.1
  • 26
    • 67650677066 scopus 로고    scopus 로고
    • Combining back-propagation and genetic algorithms to train neural networks for ambient temperature modeling in Italy
    • Ceravolo F, De Felice M, Pizzuti S (2009) Combining back-propagation and genetic algorithms to train neural networks for ambient temperature modeling in Italy. In: Applications of evolutionary computing, EvoWorkshops 2009, pp 123-131
    • (2009) Applications of Evolutionary Computing, EvoWorkshops 2009 , pp. 123-131
    • Ceravolo, F.1    De Felice, M.2    Pizzuti, S.3
  • 27
    • 33751055006 scopus 로고    scopus 로고
    • Artificial neural network models for indoor temperature prediction: Investigations in two buildings
    • DOI 10.1007/s00521-006-0047-9
    • Thomas B, Soleimani-Mohseni M (2007) Artificial neural network models for indoor temperature prediction: investigations in two buildings. Neural Comput Appl 16(1):81-89 (Pubitemid 44757307)
    • (2007) Neural Computing and Applications , vol.16 , Issue.1 , pp. 81-89
    • Thomas, B.1    Soleimani-Mohseni, M.2
  • 29
    • 9644291569 scopus 로고    scopus 로고
    • ANN Based Modelling and Correction in Dynamic Temperature Measurements
    • Artificial Intelligence and Soft Computing - ICAISC 2004
    • Jackowska-Strumillo L (2004) Ann based modelling and correction in dynamic temperature measurements. In: 7th international conference artificial intelligence and soft computing, pp 1124-1129 (Pubitemid 38835972)
    • (2004) 7th international conference artificial intelligence and soft computing , Issue.3070 , pp. 1124-1129
    • Jackowska-Strumillo, L.1
  • 31
    • 44349150545 scopus 로고    scopus 로고
    • Multilayer perceptrons: Approximation order and necessary number of hidden units
    • DOI 10.1109/TNN.2007.912306
    • S Trenn 2008 Multilayer perceptrons: approximation order and necessary number of hidden units IEEE Trans Neural Netw 19 5 836 844 10.1109/TNN.2007. 912306 (Pubitemid 351728819)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.5 , pp. 836-844
    • Trenn, S.1
  • 33
    • 80855162784 scopus 로고    scopus 로고
    • U.S. power grid visualization (2009). Available at http://www.eia.doe. gov/cneaf/electricity/page/co2-report/co2report.html
    • (2009) U.S. Power Grid Visualization
  • 34
    • 80855150136 scopus 로고    scopus 로고
    • 2 emission calculator
    • 2 emission calculator (2007). Available at http://www.falconsolution.com/co2-emission/
    • (2007)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.