메뉴 건너뛰기




Volumn 25, Issue 1, 2012, Pages 147-158

Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization

Author keywords

Ant colony optimization; Artificial neural networks; Combustion modeling; NOx emissions modeling; Support vector regression

Indexed keywords

ANT-COLONY OPTIMIZATION; ARTIFICIAL NEURAL NETWORK; COAL FIRED UTILITY BOILERS; COAL-FIRED UTILITIES; COMBUSTION MODELING; COMBUSTION OPTIMIZATION; EMISSIONS MODEL; GAUSSIAN KERNELS; GENERALIZED REGRESSION; MODELING TECHNIQUE; NEURAL NETWORKS MODEL; OPTIMAL PARAMETER; OPTIMIZATION ALGORITHMS; PREDICTIVE ACCURACY; PREDICTIVE EMISSIONS MONITORING; REAL TIME MODELING; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS; TIME RESPONSE;

EID: 80855123687     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2011.08.005     Document Type: Article
Times cited : (148)

References (55)
  • 2
    • 0034427661 scopus 로고    scopus 로고
    • Predicting combined-cycle natural gas power plant emissions by using artificial neural networks
    • Kuala Lumpur, Malaysia
    • Azid, I.A.; Ripin, Z.M.; Aris, M.S.; Ahmad, A.L.; Seetharamu, K.N.; Yusoff, R.M.; 2000. Predicting combined-cycle natural gas power plant emissions by using artificial neural networks. In: Proceedings of TENCON, vol. 3, Kuala Lumpur, Malaysia, pp. 512517.
    • (2000) Proceedings of TENCON , vol.3 , pp. 512517
    • Azid I., .A.1    Ripin Z., .M.2    Aris M., .S.3    Ahmad A., .L.4    Seetharamu K., .N.5    Yusoff R., .M.6
  • 4
    • 34250787570 scopus 로고    scopus 로고
    • Modelling of electrostatic fluidized bed (EFB) coating process using artificial neural networks
    • DOI 10.1016/j.engappai.2006.06.013, PII S0952197606001242
    • M. Barletta, A. Gisario, and S. Guarino Modelling of electrostatic fluidized bed (EFB) coating process using artificial neural networks Eng. Appl. Artif. Intell. 20 6 2007 721 733 (Pubitemid 46962282)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.6 , pp. 721-733
    • Barletta, M.1    Gisario, A.2    Guarino, S.3
  • 5
    • 33847675397 scopus 로고    scopus 로고
    • Optimizing feedforward artificial neural network architecture
    • DOI 10.1016/j.engappai.2006.06.005, PII S0952197606001072
    • P.G. Benardos, and G.C. Vosniakos Optimizing feedforward artificial neural network architecture Eng. Appl. Artif. Intell. 20 3 2007 365 382 (Pubitemid 46366649)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.3 , pp. 365-382
    • Benardos, P.G.1    Vosniakos, G.-C.2
  • 7
    • 0042510895 scopus 로고    scopus 로고
    • Artificial intelligence for management and control of pollution minimization and mitigation processes
    • C.W. Chan, and G.H. Huang Artificial intelligence for management and control of pollution minimization and mitigation processes Eng. Appl. Artif. Intell. 16 2 2003 75 90
    • (2003) Eng. Appl. Artif. Intell. , vol.16 , Issue.2 , pp. 75-90
    • Chan, C.W.1    Huang, G.H.2
  • 9
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • DOI 10.1016/S0893-6080(03)00169-2
    • V. Cherkassky, and Y. Ma Practical selection of SVM parameters and noise estimation for SVM regression Neural Networks 17 1 2004 113 126 (Pubitemid 38019003)
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 10
    • 0035330394 scopus 로고    scopus 로고
    • Prediction of gaseous emissions from a chain grate stoker boiler using neural networks of ARX structure
    • Chong, A.Z.S.; Wilcox, S.J.; Ward, J.; 2001. Prediction of gaseous emissions from a chain grate stoker boiler using neural networks of ARX structure. In: IEE Proceedings of Science, Measurement and Technology, vol. 148(3), pp. 95102.
    • (2001) IEE Proceedings of Science, Measurement and Technology , vol.148 , Issue.3 , pp. 95102
    • Chong A. .Z., .S.1    Wilcox S., .J.2    Ward, J.3
  • 11
    • 0036498712 scopus 로고    scopus 로고
    • x optimisation
    • DOI 10.1016/S0016-2361(01)00152-1, PII S0016236101001521
    • x optimisation Fuel 81 5 2002 619 626 (Pubitemid 34181559)
    • (2002) Fuel , vol.81 , Issue.5 , pp. 619-626
    • Copado, A.1    Rodriguez, F.2
  • 17
    • 33747881516 scopus 로고    scopus 로고
    • Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition
    • DOI 10.1016/j.engappai.2005.12.006, PII S0952197606000352, Special Section on Innovative Production Machines and Systems
    • E. Frias-Martinez, A. Sanchez, and J. Velez Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition Eng. Appl. Artif. Intell. 19 6 2006 693 704 (Pubitemid 44292511)
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.6 , pp. 693-704
    • Frias-Martinez, E.1    Sanchez, A.2    Velez, J.3
  • 18
    • 34249787299 scopus 로고    scopus 로고
    • Price forecast in the competitive electricity market by support vector machine
    • DOI 10.1016/j.physa.2007.03.050, PII S0378437107003251, Applications of Physics in Financial Analysis Proceedings of the 5th International Conference 'Applications of Physics in Financial Analysis' (APFA 5)
    • C. Gao, E. Bompard, R. Napoli, and H. Cheng Price forecast in the competitive electricity market by support vector machine Physica A: Stat. Mech. Appl. 382 1 2007 98 113 (Pubitemid 46856094)
    • (2007) Physica A: Statistical Mechanics and its Applications , vol.382 , Issue.1 , pp. 98-113
    • Gao, C.1    Bompard, E.2    Napoli, R.3    Cheng, H.4
  • 20
    • 0030283939 scopus 로고    scopus 로고
    • Learning experiments with genetic optimization of a generalized regression neural network
    • J.V. Hansen, and R.D. Meservy Learning experiments with genetic optimization of a generalized regression neural network Decision Support Syst. 18 34 1996 317 325
    • (1996) Decision Support Syst. , vol.18 , Issue.34 , pp. 317-325
    • Hansen, J.V.1    Meservy, R.D.2
  • 21
    • 0033719367 scopus 로고    scopus 로고
    • Modeling of nitrogen oxides formation and destruction in combustion systems
    • S.C. Hill, and D.L. Smoot Modeling of nitrogen oxides formation and destruction in combustion systems Prog. Energy Combust. Sci. 26 46 2000 417 458
    • (2000) Prog. Energy Combust. Sci. , vol.26 , Issue.46 , pp. 417-458
    • Hill, S.C.1    Smoot, D.L.2
  • 23
    • 33846454686 scopus 로고    scopus 로고
    • Predicting corporate financial distress based on integration of support vector machine and logistic regression
    • DOI 10.1016/j.eswa.2006.05.006, PII S095741740600159X
    • Z. Hua, Y. Wang, X. Xu, B. Zhang, and L. Liang Predicting corporate financial distress based on integration of support vector machine and logistic regression Expert Syst. Appl. 33 2 2007 434 440 (Pubitemid 46150047)
    • (2007) Expert Systems with Applications , vol.33 , Issue.2 , pp. 434-440
    • Hua, Z.1    Wang, Y.2    Xu, X.3    Zhang, B.4    Liang, L.5
  • 24
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimizationfor support vector machines
    • DOI 10.1016/j.eswa.2005.09.024, PII S0957417405002083
    • C.-L. Huang, and C.-J. Wang A GA-based feature selection and parameters optimization for support vector machines Expert Syst. Appl. 31 2 2006 231 240 (Pubitemid 44294444)
    • (2006) Expert Systems with Applications , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 27
    • 0242269356 scopus 로고    scopus 로고
    • Artificial intelligence for the modeling and control of combustion processes: A review
    • S.A. Kalogirou Artificial intelligence for the modeling and control of combustion processes: a review Prog. Energy Combust. Sci. 29 6 2003 515 566
    • (2003) Prog. Energy Combust. Sci. , vol.29 , Issue.6 , pp. 515-566
    • Kalogirou, S.A.1
  • 28
    • 0029183484 scopus 로고
    • Predictive emissions monitoring systems: A low-cost alternative for emissions monitoring [in cement industry]
    • San Juan, Puerto Rico
    • Kamas, J.; Keeler, J.; 1995. Predictive emissions monitoring systems: a low-cost alternative for emissions monitoring [in cement industry]. In: Proceedings of the 37th IEEE Cement Industry Technical Conference, San Juan, Puerto Rico, pp. 497509.
    • (1995) Proceedings of the 37th IEEE Cement Industry Technical Conference , pp. 497509
    • Kamas, J.1    Keeler, J.2
  • 29
    • 2942530954 scopus 로고    scopus 로고
    • Designing digital IIR filters using ant colony optimisation algorithm
    • N. Karaboga, A. Kalinli, and D. Karaboga Designing digital IIR filters using ant colony optimisation algorithm Eng. Appl. Artif. Intell. 17 3 2004 301 309
    • (2004) Eng. Appl. Artif. Intell. , vol.17 , Issue.3 , pp. 301-309
    • Karaboga, N.1    Kalinli, A.2    Karaboga, D.3
  • 31
    • 14244256837 scopus 로고    scopus 로고
    • Neural networks and genetic algorithms can support human supervisory control to reduce fossil fuel power plant emissions
    • K. Li, S. Thompson, P.A. Wieringa, J. Peng, and G.R. Duan Neural networks and genetic algorithms can support human supervisory control to reduce fossil fuel power plant emissions Cognit. Technol. Work 5 2 2003 107 126 (Pubitemid 36921828)
    • (2003) Cognit. Technol. Work , vol.5 , Issue.2 , pp. 107-126
    • Li, K.1    Thompson, S.2    Wieringa, P.A.3    Peng, J.4    Duan, G.R.5
  • 32
    • 33846600779 scopus 로고    scopus 로고
    • Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network
    • DOI 10.1016/j.tca.2006.10.026, PII S0040603106005363
    • Y.P. Liu, M.G. Wu, and J.X. Qian Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network Thermochim. Acta 454 1 2007 64 68 (Pubitemid 46185500)
    • (2007) Thermochimica Acta , vol.454 , Issue.1 , pp. 64-68
    • Liu, Y.P.1    Wu, M.G.2    Qian, J.X.3
  • 37
    • 34250715899 scopus 로고    scopus 로고
    • Forecasting of the daily meteorological pollution using wavelets and support vector machine
    • DOI 10.1016/j.engappai.2006.10.008, PII S0952197606001904
    • S. Osowski, and K. Garanty Forecasting of the daily meteorological pollution using wavelets and support vector machine Eng. Appl. Artif. Intell. 20 6 2007 745 755 (Pubitemid 46962287)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.6 , pp. 745-755
    • Osowski, S.1    Garanty, K.2
  • 38
  • 40
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • B. Samanta, K.R. Al-Balushi, and S.A. Al-Araimi Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection Eng. Appl. Artif. Intell. 16 78 2003 657 665
    • (2003) Eng. Appl. Artif. Intell. , vol.16 , Issue.78 , pp. 657-665
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 41
    • 34547535038 scopus 로고    scopus 로고
    • An ant colony optimization algorithm for continuous optimization: Application to feed-forward neural network training
    • K. Socha, and C. Blum An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training Neural Comput. Appl. 16 3 2007 235 247
    • (2007) Neural Comput. Appl. , vol.16 , Issue.3 , pp. 235-247
    • Socha, K.1    Blum, C.2
  • 42
    • 0026254768 scopus 로고
    • A general regression neural network
    • D.F. Specht A general regression neural network IEEE Trans. Neural Networks 2 6 1991 568 576
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 43
    • 0036138536 scopus 로고    scopus 로고
    • Monitoring pollutant emissions in a 4.8 MW power plant through neural network
    • DOI 10.1016/S0925-2312(01)00617-8, PII S0925231201006178
    • S. Tronci, R. Baratti, and A. Servida Monitoring pollutant emissions in a 4.8 MW power plant through neural network Neurocomputing 43 14 2002 3 15 (Pubitemid 34041223)
    • (2002) Neurocomputing , vol.43 , pp. 3-15
    • Tronci, S.1    Baratti, R.2    Servida, A.3
  • 44
    • 34250882118 scopus 로고    scopus 로고
    • Visualisation and interpretation of Support Vector Regression models
    • DOI 10.1016/j.aca.2007.03.023, PII S0003267007004904
    • B. Ustun, W.J. Melssen, and L.M.C. Buydens Visualisation and interpretation of Support Vector Regression models Anal. Chim. Acta 595 12 2007 299 309 (Pubitemid 46990301)
    • (2007) Analytica Chimica Acta , vol.595 , Issue.1-2 SPEC. ISS. , pp. 299-309
    • Ustun, B.1    Melssen, W.J.2    Buydens, L.M.C.3
  • 45
    • 31744447275 scopus 로고    scopus 로고
    • Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference
    • DOI 10.1016/j.engappai.2005.09.001, PII S0952197605001065
    • C.-M. Vong, P.-K. Wong, and Y.-P. Li Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference Eng. Appl. Artif. Intell. 19 3 2006 277 287 (Pubitemid 43177591)
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.3 , pp. 277-287
    • Vong, C.-M.1    Wong, P.-K.2    Li, Y.-P.3
  • 46
    • 33751068050 scopus 로고    scopus 로고
    • A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
    • DOI 10.1016/j.eswa.2005.12.008, PII S0957417405003490
    • C.-H. Wu, G.-H. Tzeng, Y.-J. Goo, and W.-C. Fang A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy Expert Syst. Appl. 32 2 2007 397 408 (Pubitemid 44754927)
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 397-408
    • Wu, C.-H.1    Tzeng, G.-H.2    Goo, Y.-J.3    Fang, W.-C.4
  • 47
    • 0034207548 scopus 로고    scopus 로고
    • Neural network based fault diagnosis using unmeasurable inputs
    • S.H. Yang, B.H. Chen, and X.Z. Wang Neural network based fault diagnosis using unmeasurable inputs Eng. Appl. Artif. Intell. 13 3 2000 345 356
    • (2000) Eng. Appl. Artif. Intell. , vol.13 , Issue.3 , pp. 345-356
    • Yang, S.H.1    Chen, B.H.2    Wang, X.Z.3
  • 48
    • 33846837272 scopus 로고    scopus 로고
    • Fault diagnostics based on particle swarm optimisation and support vector machines
    • S.F. Yuan, and F.L. Chu Fault diagnostics based on particle swarm optimisation and support vector machines Mech. Syst. Signal Process. 21 4 2007 1787 1798
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.4 , pp. 1787-1798
    • Yuan, S.F.1    Chu, F.L.2
  • 51
    • 80855166159 scopus 로고    scopus 로고
    • x emissions from coal fired boilers using generalized regression neural network, bioinformatics and biomedical engineering
    • Shanghai, China
    • x emissions from coal fired boilers using generalized regression neural network, bioinformatics and biomedical engineering. In: Proceedings of the Second ICBBE, vol. 3, Shanghai, China, pp. 19161919.
    • (2008) Proceedings of the Second ICBBE , vol.3 , pp. 19161919
    • Zheng L., .G.1    Yu S., .J.2    Yu M., .G.3
  • 53
    • 0142156058 scopus 로고    scopus 로고
    • Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks
    • DOI 10.1016/j.energy.2003.08.004
    • x emission characteristics of a tangentially fired boiler with artificial neural networks Energy 29 1 2004 167 183 (Pubitemid 37312615)
    • (2004) Energy , vol.29 , Issue.1 , pp. 167-183
    • Zhou, H.1    Cen, K.2    Fan, J.3
  • 54
    • 18444418535 scopus 로고    scopus 로고
    • Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms
    • DOI 10.1002/er.1070
    • H. Zhou, K.F. Cen, and J.R. Fan Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms Int. J. Energy Res. 29 6 2005 499 510 (Pubitemid 40652256)
    • (2005) International Journal of Energy Research , vol.29 , Issue.6 , pp. 499-510
    • Zhou, H.1    Cen, K.2    Fan, J.3
  • 55
    • 0035545813 scopus 로고    scopus 로고
    • x pulverized coal combustion
    • x pulverized coal combustion Fuel 80 15 2001 2163 2169
    • (2001) Fuel , vol.80 , Issue.15 , pp. 2163-2169
    • Zhou, H.1    Cen, K.F.2    Mao, J.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.