메뉴 건너뛰기




Volumn 32, Issue 16, 2011, Pages 2171-2177

Global and local choice of the number of nearest neighbors in locally linear embedding

Author keywords

Dimensionality reduction; Embedding quality; Locally linear embedding; Number of nearest neighbors

Indexed keywords

DIMENSIONALITY REDUCTION; EMBEDDING QUALITY; EMBEDDINGS; LOCAL PROPERTY; LOCALLY LINEAR EMBEDDING; LOCALLY LINEAR EMBEDDING ALGORITHMS; NEAREST NEIGHBORS; QUALITY MEASURES; REAL-WORLD DATASETS; SAMPLE POINT;

EID: 80755153572     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2011.05.011     Document Type: Conference Paper
Times cited : (39)

References (15)
  • 2
    • 63649089799 scopus 로고    scopus 로고
    • Local procrustes for manifold embedding: A measure of embedding quality and embedding algorithms
    • Goldberg, Y.; Ritov, Y.; 2009. Local procrustes for manifold embedding: a measure of embedding quality and embedding algorithms. Machine learn.
    • (2009) Machine Learn
    • Goldberg, Y.1    Ritov, Y.2
  • 4
    • 0003946510 scopus 로고    scopus 로고
    • Principal Component Analysis
    • Springer Series in Statistics Springer New York, NY, USA
    • I.T. Jolliffe Principal Component Analysis 2nd ed Springer Series in Statistics 2002 Springer New York, NY, USA
    • (2002) 2nd Ed
    • Jolliffe, I.T.1
  • 6
    • 22844435049 scopus 로고    scopus 로고
    • Incremental locally linear embedding
    • DOI 10.1016/j.patcog.2005.04.006, PII S0031320305001792
    • O. Kouropteva, O. Okun, and M. PietkSinen Incremental locally linear embedding Pattern Recognition 38 2005 1764 1767 (Pubitemid 41037108)
    • (2005) Pattern Recognition , vol.38 , Issue.10 , pp. 1764-1767
    • Kouropteva, O.1    Okun, O.2    Pietikainen, M.3
  • 7
    • 58249094366 scopus 로고    scopus 로고
    • Weighted locally linear embedding for dimension reduction
    • Y. Pan, S.S. Ge, and A.A. Mamun Weighted locally linear embedding for dimension reduction Pattern Recognition 42 2009 798 811
    • (2009) Pattern Recognition , vol.42 , pp. 798-811
    • Pan, Y.1    Ge, S.S.2    Mamun, A.A.3
  • 8
    • 0041875228 scopus 로고    scopus 로고
    • Grouping and dimensionality reduction by locally linear embedding
    • Polito, M.; Perona, P.; 2001. Grouping and dimensionality reduction by locally linear embedding. In: NIPS.
    • (2001) NIPS
    • Polito, M.1    Perona, P.2
  • 9
    • 4344646282 scopus 로고    scopus 로고
    • Methods of Multivariate Analysis
    • Wiley-Interscience Hoboken, NJ, USA
    • A.C. Rencher Methods of Multivariate Analysis second ed 2002 Wiley-Interscience Hoboken, NJ, USA
    • (2002) Second Ed
    • Rencher, A.C.1
  • 10
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S.T. Roweis, and L.K. Saul Nonlinear dimensionality reduction by locally linear embedding Science 29 2000 2323 2326 (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 12
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • L.K. Saul, and S.T. Roweis Think globally, fit locally: Unsupervised learning of low dimensional manifolds Machine Learning Research 4 2003 119 155
    • (2003) Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 14
    • 0038797944 scopus 로고    scopus 로고
    • Statistical Pattern Recognition
    • John Wiley & Sons, Ltd Indianapolis, IN, USA
    • A.R. Webb Statistical Pattern Recognition second ed 2002 John Wiley & Sons, Ltd Indianapolis, IN, USA
    • (2002) Second Ed
    • Webb, A.R.1
  • 15
    • 58149139698 scopus 로고    scopus 로고
    • Generalized locally linear embedding based on local reconstruction similarity
    • Zeng, X.; Luo, S.; 2008. Generalized locally linear embedding based on local reconstruction similarity. Fuzzy Systems and Knowledge Discovery.
    • (2008) Fuzzy Systems and Knowledge Discovery
    • Zeng, X.1    Luo, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.