메뉴 건너뛰기




Volumn 252, Issue 2, 2012, Pages 1283-1308

The Nehari manifold for elliptic equation involving the square root of the Laplacian

Author keywords

Fractional Laplacian; Nehari manifold; Sign changing weight; Variational methods

Indexed keywords


EID: 80655147001     PISSN: 00220396     EISSN: 10902732     Source Type: Journal    
DOI: 10.1016/j.jde.2011.09.015     Document Type: Article
Times cited : (42)

References (17)
  • 1
    • 17544364254 scopus 로고    scopus 로고
    • The Nehari manifold for a semilinear elliptic equation involving a sublinear term
    • Brown K.J. The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc. Var. Partial Differential Equations 2005, 22:483-494.
    • (2005) Calc. Var. Partial Differential Equations , vol.22 , pp. 483-494
    • Brown, K.J.1
  • 2
    • 0041351871 scopus 로고    scopus 로고
    • The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function
    • Brown K.J., Zhang Yanping The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Differential Equations 2003, 193:481-499.
    • (2003) J. Differential Equations , vol.193 , pp. 481-499
    • Brown, K.J.1    Zhang, Y.2
  • 3
    • 30544441113 scopus 로고    scopus 로고
    • Layer solutions in a half-space for boundary reactions
    • Cabre X., Solà-Morales J. Layer solutions in a half-space for boundary reactions. Comm. Pure Appl. Math. 2005, 58:1678-1732.
    • (2005) Comm. Pure Appl. Math. , vol.58 , pp. 1678-1732
    • Cabre, X.1    Solà-Morales, J.2
  • 4
    • 84855603002 scopus 로고    scopus 로고
    • Nonlinear equations for fractional Laplacians I regularity, maximum principle and Hamiltonian estimates, preprint
    • X. Cabre, Y. Sire, Nonlinear equations for fractional Laplacians I regularity, maximum principle and Hamiltonian estimates, preprint.
    • Cabre, X.1    Sire, Y.2
  • 5
    • 77952952045 scopus 로고    scopus 로고
    • Positive solutions of nonlinear problems involving the square root of the Laplacian
    • Cabre X., Tan J. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 2010, 224:2052-2093.
    • (2010) Adv. Math. , vol.224 , pp. 2052-2093
    • Cabre, X.1    Tan, J.2
  • 7
    • 80655135892 scopus 로고    scopus 로고
    • Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains, preprint
    • A. Capella, Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains, preprint.
    • Capella, A.1
  • 8
    • 49549094311 scopus 로고    scopus 로고
    • On a class of Schrodinger-type equations with indefinite weight functions
    • Chabrowski J., Costa D.G. On a class of Schrodinger-type equations with indefinite weight functions. Comm. Partial Differential Equations 2008, 33:1368-1394.
    • (2008) Comm. Partial Differential Equations , vol.33 , pp. 1368-1394
    • Chabrowski, J.1    Costa, D.G.2
  • 9
    • 80655135887 scopus 로고    scopus 로고
    • Fractional Laplacian in conformal geometry, preprint
    • A. Chang, M. Gonzalez, Fractional Laplacian in conformal geometry, preprint.
    • Chang, A.1    Gonzalez, M.2
  • 10
    • 78650993948 scopus 로고    scopus 로고
    • The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions
    • Chen Ching-yu, Kuo Yueh-cheng, Wu Tsung-fang The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differential Equations 2010, 250:1876-1908.
    • (2010) J. Differential Equations , vol.250 , pp. 1876-1908
    • Chen, C.-Y.1    Kuo, Y.-C.2    Wu, T.-F.3
  • 11
    • 0001294182 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The limit case, II
    • Lions P.L. The concentration-compactness principle in the calculus of variations. The limit case, II. Rev. Mat. Iberoam. 1985, 1:45-121.
    • (1985) Rev. Mat. Iberoam. , vol.1 , pp. 45-121
    • Lions, P.L.1
  • 12
    • 0000845475 scopus 로고
    • On a class of nonlinear second-order differential equations
    • Nehari Z. On a class of nonlinear second-order differential equations. Trans. Amer. Math. Soc. 1960, 95:101-123.
    • (1960) Trans. Amer. Math. Soc. , vol.95 , pp. 101-123
    • Nehari, Z.1
  • 13
    • 33751514593 scopus 로고    scopus 로고
    • Regularity of the obstacle problem for a fractional power of the Laplace operator
    • Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 2006, 60:67-112.
    • (2006) Comm. Pure Appl. Math. , vol.60 , pp. 67-112
    • Silvestre, L.1
  • 14
    • 79960461967 scopus 로고    scopus 로고
    • The Brezis-Nirenberg type problem involving the square root of the Laplacian
    • Tan J. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differential Equations 2011, 42:21-41.
    • (2011) Calc. Var. Partial Differential Equations , vol.42 , pp. 21-41
    • Tan, J.1
  • 15
    • 85013168104 scopus 로고
    • On nonhomogeneous elliptic equations involving critical Sobolev exponent
    • Tarantello G. On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincare Anal. Non Lineaire 1992, 9:243-261.
    • (1992) Ann. Inst. H. Poincare Anal. Non Lineaire , vol.9 , pp. 243-261
    • Tarantello, G.1
  • 16
    • 70350366582 scopus 로고    scopus 로고
    • Multiple positive solutions for a class of concave-convex elliptic problems in involving sign-changing
    • Wu Tsung-fang Multiple positive solutions for a class of concave-convex elliptic problems in involving sign-changing. J. Funct. Anal. 2010, 258:99-131.
    • (2010) J. Funct. Anal. , vol.258 , pp. 99-131
    • Wu, T.-F.1
  • 17
    • 77955570947 scopus 로고    scopus 로고
    • Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight
    • Wu Tsung-fang Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight. J. Differential Equations 2010, 249:1549-1578.
    • (2010) J. Differential Equations , vol.249 , pp. 1549-1578
    • Wu, T.-F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.