-
2
-
-
58049194220
-
A neuro-coevolutionary genetic fuzzy system to design soft sensors
-
M. R. Delgado, E. Y. Nagai, and L. V. R. de Arruda. A neuro-coevolutionary genetic fuzzy system to design soft sensors. Soft Computing, 13(5):481-495, 2008.
-
(2008)
Soft Computing
, vol.13
, Issue.5
, pp. 481-495
-
-
Delgado, M.R.1
Nagai, E.Y.2
De Arruda, L.V.R.3
-
3
-
-
78049310247
-
Computer aided optimization of natural gas pipe networks using genetic algorithm
-
O. F. M. El-Mahdy. M. E. H. Ahmed, and S. Metwalli. Computer aided optimization of natural gas pipe networks using genetic algorithm. Applied Soft Computing, pages 1141-1150, 2010.
-
(2010)
Applied Soft Computing
, pp. 1141-1150
-
-
El-Mahdy, O.F.M.1
Ahmed, M.E.H.2
Metwalli, S.3
-
5
-
-
68949155378
-
Feature subset selection in large dimensionality domains
-
I. A. Gheyas and L. S. Smith. Feature subset selection in large dimensionality domains. Pattern Recognition, 43(1):5-13, 2010.
-
(2010)
Pattern Recognition
, vol.43
, Issue.1
, pp. 5-13
-
-
Gheyas, I.A.1
Smith, L.S.2
-
6
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
DOI 10.1016/0893-6080(89)90020-8
-
K. M. Hornik, M. Stinchcombea, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359-366, 1989. (Pubitemid 20609008)
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
8
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence Archive, 97(1-2):273-324, December 1997. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
10
-
-
33845980222
-
Neural input selection-A fast model-based approach
-
DOI 10.1016/j.neucom.2006.10.011, PII S0925231206002803
-
K. Li and J.-X. Peng. Neural input selection-a fast model-based approach. Neurocomputing, 70(4-6):762-769, 2007. (Pubitemid 46043972)
-
(2007)
Neurocomputing
, vol.70
, Issue.4-6
, pp. 762-769
-
-
Li, K.1
Peng, J.-X.2
-
11
-
-
59849122121
-
Applications of information theory, genetic algorithms, and neural models to predict oil flow
-
O. Ludwig, U. Nunes, R. Araújo, L. Schnitman, and H. A. Lepikson. Applications of information theory, genetic algorithms, and neural models to predict oil flow. Communications in Nonlinear Science and Numerical Simulation, 17(7):2870-2885, 2009.
-
(2009)
Communications in Nonlinear Science and Numerical Simulation
, vol.17
, Issue.7
, pp. 2870-2885
-
-
Ludwig, O.1
Nunes, U.2
Araújo, R.3
Schnitman, L.4
Lepikson, H.A.5
-
13
-
-
40949143180
-
Performing feature selection with multilayer perceptrons
-
March
-
E. Romero and J. M. Sopena. Performing feature selection with multilayer perceptrons. IEEE Transations on neural networks, 19(3), March 2008.
-
(2008)
IEEE Transations on Neural Networks
, vol.19
, Issue.3
-
-
Romero, E.1
Sopena, J.M.2
-
14
-
-
57249095668
-
Combined input variable selection and model complexity control for nonlinear regression
-
T. Similä and J. Tikka. Combined input variable selection and model complexity control for nonlinear regression. Pattern Recognition Letters, 30(3):231-236, 2009.
-
(2009)
Pattern Recognition Letters
, vol.30
, Issue.3
, pp. 231-236
-
-
Similä, T.1
Tikka, J.2
-
17
-
-
32544452874
-
Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure
-
DOI 10.1016/j.neucom.2005.04.010, PII S0925231205001852
-
X. Zeng and D. S. Yeung. Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure. Neurocomputing, 69(7-9):825-837, 2006. (Pubitemid 43230385)
-
(2006)
Neurocomputing
, vol.69
, Issue.7-9 SPEC. ISS.
, pp. 825-837
-
-
Zeng, X.1
Yeung, D.S.2
|