메뉴 건너뛰기




Volumn , Issue , 2011, Pages 361-366

Analysis of high-level features for vocal emotion recognition

Author keywords

classification; Emotion recognition; high level features

Indexed keywords

EMOTION CLASSIFICATION; EMOTION RECOGNITION; EMOTIONAL SPEECH; HIGH-LEVEL FEATURES; HUMAN MACHINE INTERACTION;

EID: 80555139634     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/TSP.2011.6043708     Document Type: Conference Paper
Times cited : (16)

References (24)
  • 1
    • 80555141194 scopus 로고    scopus 로고
    • Affective human-robotic interaction. Affect and emotion in human-computer interaction: From theory to applications
    • Christian, J., Deeming, A.: Affective Human-Robotic Interaction. Affect and Emotion in Human-Computer Interaction: From Theory to Applications, Christian Peter, Russell Beale, 2008.
    • (2008) Christian Peter, Russell Beale
    • Christian, J.1    Deeming, A.2
  • 5
    • 33947692126 scopus 로고    scopus 로고
    • Frequency band analysis for stress detection using teager energy operator based feature
    • Rahurkar, M., Hansen, J. H. L.: Frequency Band Analysis for Stress Detection Using Teager energy Operator Based Feature. In: Proc. Int. Conf. Spoken Language Processing (ICSLP '02), vol. 3, pp. 2021-2024, 2001.
    • (2001) Proc. Int. Conf. Spoken Language Processing (ICSLP '02) , vol.3 , pp. 2021-2024
    • Rahurkar, M.1    Hansen, J.H.L.2
  • 6
    • 34047248387 scopus 로고    scopus 로고
    • An objective and subjective study of the role of semantics and prosodic features in building corpora for emotional TTS
    • Navas E., Hernáez, Luengo I.: An Objective and Subjective Study of the Role of Semantics and Prosodic Features in Building Corpora for Emotional TTS. IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, pp. 1117-1127, 2006.
    • (2006) IEEE Transactions on Audio, Speech, and Language Processing , vol.14 , pp. 1117-1127
    • Navas, E.1    Hernáez, L.I.2
  • 8
    • 85115260483 scopus 로고
    • Floating search method for feature selection with non-monotonic criterion functions
    • Pudil P., Ferri. F., Novovicova J., Kittler J.: Floating search method for feature selection with non-monotonic criterion functions. Pattern Recognition, vol. 2, pp. 279-283, 1994.
    • (1994) Pattern Recognition , vol.2 , pp. 279-283
    • Pudil, P.1    Ferri, F.2    Novovicova, J.3    Kittler, J.4
  • 9
    • 33746410556 scopus 로고    scopus 로고
    • Emotional speech recognition: Resources, features and methods
    • Ververidis, D., Kotropoulos, C.: Emotional Speech Recognition: Resources, Features and Methods. Elsevier Speech Communication, vol. 48, no. 9, pp. 1162-1181, 2006.
    • (2006) Elsevier Speech Communication , vol.48 , Issue.9 , pp. 1162-1181
    • Ververidis, D.1    Kotropoulos, C.2
  • 13
    • 74349108827 scopus 로고    scopus 로고
    • The COST 2102 Italian audio and video emotional database
    • May 28-30, Vietri sul Mare
    • Esposito, A., Riviello, M.T., Di Maio, G.: The COST 2102 Italian Audio and Video Emotional Database. Proceedings of WIRN 2009, May 28-30, Vietri sul Mare, 2009.
    • (2009) Proceedings of WIRN 2009
    • Esposito, A.1    Riviello, M.T.2    Di Maio, G.3
  • 14
    • 0032673260 scopus 로고    scopus 로고
    • Emotion recognition and its application to computer agents with spontaneous interactive capabilities
    • Florence
    • Nakatsu, R., Solomides, A., Tosa, N., "Emotion recognition and its application to computer agents with spontaneous interactive capabilities". Proc. Int. Conf. Multimedia Computing and Systems (ICMCS '99). Vol. 2. Florence, pp. 804-808, 1999.
    • (1999) Proc. Int. Conf. Multimedia Computing and Systems (ICMCS '99) , vol.2 , pp. 804-808
    • Nakatsu, R.1    Solomides, A.2    Tosa, N.3
  • 15
    • 80555141198 scopus 로고    scopus 로고
    • http://emotion-research.net/wiki/Databases.
  • 17
    • 17744416984 scopus 로고    scopus 로고
    • Improving the filterbank of a classic speech feature extraction algorithm
    • Bangok
    • Skowronski, M., Harris, J.; Improving the Filterbank of a Classic Speech Feature Extraction Algorithm. IEEE Int. Symposium on Circuits and System, Bangok, pp 281-284, 2003
    • (2003) IEEE Int. Symposium on Circuits and System , pp. 281-284
    • Skowronski, M.1    Harris, J.2
  • 18
    • 0025041264 scopus 로고
    • Perceptual linear predictive (PLP) analysis of speech
    • US
    • Hermansky, H.: Perceptual Linear Predictive (PLP) Analysis of Speech. Journal of Acoustic Socienty, US, no. 4, pp. 1738-1753, 1990.
    • (1990) Journal of Acoustic Socienty , Issue.4 , pp. 1738-1753
    • Hermansky, H.1
  • 21
    • 0033688848 scopus 로고    scopus 로고
    • High resoultion speech feature parameterization for/monophone based stressed speech recognition
    • Sarikaya, R., Hansen, J.H.L: High Resoultion Speech Feature Parameterization for /monophone Based Stressed Speech Recognition. IEEE Signal Processing Letters, 2000.
    • (2000) IEEE Signal Processing Letters
    • Sarikaya, R.1    Hansen, J.H.L.2
  • 23
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and minredundancy
    • Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and minredundancy. EEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 8, pp.1226-1238, 2005.
    • (2005) EEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.