메뉴 건너뛰기




Volumn 39, Issue 3, 2012, Pages 2606-2620

A novel hybrid classification model of artificial neural networks and multiple linear regression models

Author keywords

Artificial neural networks (ANNs); Classification; Discriminant analysis (DA); Multiple linear regression models (MLR); Pattern recognition

Indexed keywords

BUSINESS DECISIONS; CLASSIFICATION ACCURACY; CLASSIFICATION MODELS; DATA SETS; EMPIRICAL RESULTS; FORECASTING ACCURACY; HYBRID CLASSIFICATION; HYBRID MODEL; K-NEAREST NEIGHBORS; LINEAR DISCRIMINANT ANALYSIS; MULTIPLE LINEAR REGRESSION MODELS; PREDICTIVE PERFORMANCE; QUADRATIC DISCRIMINANT ANALYSIS; REAL-WORLD APPLICATION;

EID: 80255123447     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.08.116     Document Type: Article
Times cited : (92)

References (71)
  • 1
    • 0037209480 scopus 로고    scopus 로고
    • Classification of heart rate data using artificial neural network and fuzzy equivalence relation
    • U. Acharya, P. Bhat, S.S. Iyengar, A. Rao, and S. Dua Classification of heart rate data using artificial neural network and fuzzy equivalence relation Pattern Recognition 36 2003 61 68
    • (2003) Pattern Recognition , vol.36 , pp. 61-68
    • Acharya, U.1    Bhat, P.2    Iyengar, S.S.3    Rao, A.4    Dua, S.5
  • 2
    • 77950189563 scopus 로고    scopus 로고
    • A hybrid classification method of k nearest neighbor Bayesian methods and genetic algorithm
    • M. Aci, C. Inan, and M. Avci A hybrid classification method of k nearest neighbor Bayesian methods and genetic algorithm Expert Systems with Applications 37 2010 5061 5067
    • (2010) Expert Systems with Applications , vol.37 , pp. 5061-5067
    • Aci, M.1    Inan, C.2    Avci, M.3
  • 4
    • 40549146606 scopus 로고    scopus 로고
    • Cline: A new decision-tree family
    • DOI 10.1109/TNN.2007.910729
    • M. Amasyali, and O. Ersoy Cline: A new decision-tree family IEEE Transactions on Neural Networks 19 2 2008 356 363 (Pubitemid 351359300)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.2 , pp. 356-363
    • Amasyali, M.F.1    Ersoy, O.2
  • 5
    • 36948999941 scopus 로고    scopus 로고
    • Irivine, CA: University of California, School of Information and Computer Science 2007
    • Asuncion, A.; & Newman, D. (2007). UCI machine learning repository. Irivine, CA: University of California, School of Information and Computer Science, 2007.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.2
  • 7
    • 33847675397 scopus 로고    scopus 로고
    • Optimizing feedforward artificial neural network architecture
    • DOI 10.1016/j.engappai.2006.06.005, PII S0952197606001072
    • P.G. Benardos, and G.C. Vosniakos Optimizing feed-forward artificial neural network architecture Engineering Applications of Artificial Intelligence 20 2007 365 382 (Pubitemid 46366649)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.3 , pp. 365-382
    • Benardos, P.G.1    Vosniakos, G.-C.2
  • 8
    • 0033272085 scopus 로고    scopus 로고
    • The effect of misclassification costs on neural network classifiers
    • V. Berardi, and G.P. Zhang The effect of misclassification costs on neural network classifiers Decision Sciences 30 3 1999 659 668
    • (1999) Decision Sciences , vol.30 , Issue.3 , pp. 659-668
    • Berardi, V.1    Zhang, G.P.2
  • 9
    • 34347399764 scopus 로고    scopus 로고
    • Supervised pattern recognition in food analysis
    • DOI 10.1016/j.chroma.2007.05.024, PII S0021967307008746, Data Analysis in Chromatography
    • L. Berrueta, R. Alonso-Salces, and K. Heberger Supervised pattern recognition in food analysis Journal of Chromatography A 1158 2007 196 214 (Pubitemid 47021153)
    • (2007) Journal of Chromatography A , vol.1158 , Issue.1-2 , pp. 196-214
    • Berrueta, L.A.1    Alonso-Salces, R.M.2    Heberger, K.3
  • 10
    • 0036195207 scopus 로고    scopus 로고
    • Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm
    • S. Billings, and K. Lee Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm Neural Networks 15 2 2002 262 270
    • (2002) Neural Networks , vol.15 , Issue.2 , pp. 262-270
    • Billings, S.1    Lee, K.2
  • 11
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithm
    • L. Breiman Prediction games and arcing algorithm Neural Computation 11 1999 1493 1517
    • (1999) Neural Computation , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 13
    • 67349281255 scopus 로고    scopus 로고
    • Evolutionary artificial neural network design and training for wood veneer classification
    • M. Castellani, and H. Rowlands Evolutionary artificial neural network design and training for wood veneer classification Engineering Applications of Artificial Intelligence 22 2009 732 741
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , pp. 732-741
    • Castellani, M.1    Rowlands, H.2
  • 14
    • 58549107351 scopus 로고    scopus 로고
    • Simultaneous cancer classification and gene selection with Bayesian nearest neighbor method: An integrated approach
    • S. Chakraborty Simultaneous cancer classification and gene selection with Bayesian nearest neighbor method: An integrated approach Computational Statistics and Data Analysis 53 2009 1462 1474
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 1462-1474
    • Chakraborty, S.1
  • 16
    • 80255139764 scopus 로고    scopus 로고
    • Enhancing the classification accuracy by scatter-search-based ensemble approach
    • 2010
    • Chen, S.; Lin, S.; & Chou, S. (2010). Enhancing the classification accuracy by scatter-search-based ensemble approach. Applied Soft Computing xxx, xxx-xxx, 2010.
    • (2010) Applied Soft Computing , vol.30
    • Chen, S.1    Lin, S.2    Chou, S.3
  • 19
    • 77958150424 scopus 로고    scopus 로고
    • An adaptive classification system for video-based face recognition
    • Connolly, J.; Granger, E.; & Sabourin, R. (2010). An adaptive classification system for video-based face recognition. Information Sciences xxx, xxx-xxx.
    • (2010) Information Sciences , vol.30
    • Connolly, J.1    Granger, E.2    Sabourin, R.3
  • 20
    • 0028416730 scopus 로고
    • Neural networks decision tree induction and discriminant analysis: An empirical comparison
    • S. Curram, and J. Mingers Neural networks decision tree induction and discriminant analysis: An empirical comparison The Journal of the Operational Research Society 45 4 1994 440 450
    • (1994) The Journal of the Operational Research Society , vol.45 , Issue.4 , pp. 440-450
    • Curram, S.1    Mingers, J.2
  • 21
    • 34047141566 scopus 로고    scopus 로고
    • Comparison of four approaches to a rock facies classification problem
    • DOI 10.1016/j.cageo.2006.08.011, PII S0098300406001956
    • M. Dubois, G. Bohling, and S. Chakrabarti Comparison of four approaches to a rock facies classification problem Computers & Geosciences 33 2007 599 617 (Pubitemid 46523792)
    • (2007) Computers and Geosciences , vol.33 , Issue.5 , pp. 599-617
    • Dubois, M.K.1    Bohling, G.C.2    Chakrabarti, S.3
  • 23
    • 0000887162 scopus 로고
    • Choice of the smoothing parameter and efficiency of k-nearest neighbor
    • G. Enas, and S. Choi Choice of the smoothing parameter and efficiency of k-nearest neighbor Computers and Mathematics with Applications 12 1986 235 244
    • (1986) Computers and Mathematics with Applications , vol.12 , pp. 235-244
    • Enas, G.1    Choi, S.2
  • 24
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R.A. Fisher The use of multiple measurements in taxonomic problems Annals of Eugenics 7 1936 465 475
    • (1936) Annals of Eugenics , vol.7 , pp. 465-475
    • Fisher, R.A.1
  • 27
    • 71349085163 scopus 로고    scopus 로고
    • Measuring effectiveness of a dynamic artificial neural network algorithm for classification problems
    • M. Ghiassi, and C. Burnley Measuring effectiveness of a dynamic artificial neural network algorithm for classification problems Expert Systems with Applications 37 2010 3118 3128
    • (2010) Expert Systems with Applications , vol.37 , pp. 3118-3128
    • Ghiassi, M.1    Burnley, C.2
  • 28
    • 33646575961 scopus 로고    scopus 로고
    • On optimum choice of k in nearest neighbor classification
    • DOI 10.1016/j.csda.2005.06.007, PII S0167947305001374
    • A.K. Ghosh On optimum choice of K in nearest neighbor classification Computational Statistics & Data Analysis 50 2006 3113 3123 (Pubitemid 43729105)
    • (2006) Computational Statistics and Data Analysis , vol.50 , Issue.11 , pp. 3113-3123
    • Ghosh, A.K.1
  • 29
    • 33644746290 scopus 로고    scopus 로고
    • Classification of electro-oculogram signals using artificial neural network
    • DOI 10.1016/j.eswa.2005.09.017, PII S0957417405002058
    • A. Guven, and S. Kara Classification of electro-oculogram signals using artificial neural network Expert Systems with Applications 31 2006 199 205 (Pubitemid 43344278)
    • (2006) Expert Systems with Applications , vol.31 , Issue.1 , pp. 199-205
    • Guven, A.1    Kara, S.2
  • 30
    • 33644995117 scopus 로고    scopus 로고
    • The comparison of different feed forward neural network architectures for ECG signal diagnosis
    • H. Hosseini, D. Luo, and K.J. Reynolds The comparison of different feed forward neural network architectures for ECG signal diagnosis Medical Engineering & Physics 28 2006 372 378
    • (2006) Medical Engineering & Physics , vol.28 , pp. 372-378
    • Hosseini, H.1    Luo, D.2    Reynolds, K.J.3
  • 31
    • 34248545091 scopus 로고    scopus 로고
    • A hybrid classification method using error pattern modeling
    • DOI 10.1016/j.eswa.2006.09.015, PII S0957417406002727
    • J. Hur, and J. Kim A hybrid classification method using error pattern modeling Expert Systems with Applications 34 2008 231 241 (Pubitemid 46756253)
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 231-241
    • Hur, J.1    Kim, J.W.2
  • 32
    • 67649499837 scopus 로고    scopus 로고
    • Gait classification in post-stroke patients using artificial neural networks
    • K. Kaczmarczyk, A. Wit, M. Krawczyk, and J. Zaborski Gait classification in post-stroke patients using artificial neural networks Gait & Posture 30 2009 207 210
    • (2009) Gait & Posture , vol.30 , pp. 207-210
    • Kaczmarczyk, K.1    Wit, A.2    Krawczyk, M.3    Zaborski, J.4
  • 33
    • 34250886271 scopus 로고    scopus 로고
    • Atrial fibrillation classification with artificial neural networks
    • DOI 10.1016/j.patcog.2007.03.008, PII S0031320307001161
    • S. Kara, and M. Okandan Atrial fibrillation classification with artificial neural networks Pattern Recognition 40 2007 2967 2973 (Pubitemid 46990446)
    • (2007) Pattern Recognition , vol.40 , Issue.11 , pp. 2967-2973
    • Kara, S.1    Okandan, M.2
  • 34
    • 58349106852 scopus 로고    scopus 로고
    • Estimation of protein structures by classification of angles between a-carbons of amino acids based on artificial neural networks
    • A. Karci, and M. Demir Estimation of protein structures by classification of angles between a-carbons of amino acids based on artificial neural networks Expert Systems with Applications 36 2009 5541 5548
    • (2009) Expert Systems with Applications , vol.36 , pp. 5541-5548
    • Karci, A.1    Demir, M.2
  • 36
    • 70349453596 scopus 로고    scopus 로고
    • An artificial neural network (p, d, q) model for time series forecasting
    • M. Khashei, and M. Bijari An artificial neural network (p, d, q) model for time series forecasting Expert Systems with Applications 37 2010 479 489
    • (2010) Expert Systems with Applications , vol.37 , pp. 479-489
    • Khashei, M.1    Bijari, M.2
  • 37
    • 58149468814 scopus 로고    scopus 로고
    • Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
    • M. Khashei, M. Bijari, and GH A. Raissi Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs) Neurocomputing 72 2009 956 967
    • (2009) Neurocomputing , vol.72 , pp. 956-967
    • Khashei, M.1    Bijari, M.2    Raissi, G.H.A.3
  • 38
    • 39049162430 scopus 로고    scopus 로고
    • A new hybrid artificial neural networks and fuzzy regression model for time series forecasting
    • DOI 10.1016/j.fss.2007.10.011, PII S0165011407004678
    • M. Khashei, S.R. Hejazi, and M. Bijari A new hybrid artificial neural networks and fuzzy regression model for time series forecasting Fuzzy Sets and Systems 159 2008 769 786 (Pubitemid 351240997)
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.7 , pp. 769-786
    • Khashei, M.1    Reza Hejazi, S.2    Bijari, M.3
  • 40
    • 50149101346 scopus 로고    scopus 로고
    • Classification of Slovak white wines using artificial neural networks and discriminant techniques
    • D. Kruzlicova, J. Mocak, B. Balla, J. Petka, M. Farkova, and J. Havel Classification of Slovak white wines using artificial neural networks and discriminant techniques Food Chemistry 112 2009 1046 1052
    • (2009) Food Chemistry , vol.112 , pp. 1046-1052
    • Kruzlicova, D.1    Mocak, J.2    Balla, B.3    Petka, J.4    Farkova, M.5    Havel, J.6
  • 41
    • 34548215072 scopus 로고    scopus 로고
    • Consensual and hierarchical classification of remotely sensed multispectral images
    • DOI 10.1109/TGRS.2007.900675
    • J. Lee, and O. Ersoy Consensual and hierarchical classification of remotely sensed multispectral images IEEE Transactions on Geoscience and Remote Sensing 45 9 2007 2953 2963 (Pubitemid 47331322)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.9 , pp. 2953-2963
    • Lee, J.1    Ersoy, O.K.2
  • 45
    • 73449097843 scopus 로고    scopus 로고
    • Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data
    • U. Maulik, and A. Mukhopadhyay Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data Computers & Operations Research 37 2010 1369 1380
    • (2010) Computers & Operations Research , vol.37 , pp. 1369-1380
    • Maulik, U.1    Mukhopadhyay, A.2
  • 46
    • 33244467462 scopus 로고    scopus 로고
    • RBF-based neurodynamic nearest neighbor classification in real pattern space
    • DOI 10.1016/j.patcog.2005.10.026, PII S0031320305004310
    • M. Muezzinoglu, and J. Zurada RBF-based neurodynamic nearest neighbor classification in real pattern space Pattern Recognition 39 2006 747 760 (Pubitemid 43276093)
    • (2006) Pattern Recognition , vol.39 , Issue.5 , pp. 747-760
    • Muezzinoglu, M.K.1    Zurada, J.M.2
  • 47
    • 0034801232 scopus 로고    scopus 로고
    • Fingerprints classification using artificial neural networks: A combined structural and statistical approach
    • K. Nagaty Fingerprints classification using artificial neural networks: a combined structural and statistical approach Neural Networks 14 2001 1239 1305
    • (2001) Neural Networks , vol.14 , pp. 1239-1305
    • Nagaty, K.1
  • 48
    • 0037233261 scopus 로고    scopus 로고
    • Classification of heart sounds using an artificial neural network
    • DOI 10.1016/S0167-8655(02)00281-7, PII S0167865502002817
    • T. olmez, and Z. Dokur Classification of heart sounds using an artificial neural network Pattern Recognition Letters 24 2003 617 629 (Pubitemid 36080800)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.1-3 , pp. 617-629
    • Olmez, T.1    Dokur, Z.2
  • 49
    • 0033722932 scopus 로고    scopus 로고
    • A hybrid genetic fuzzy neural network algorithm designed for classification problems involving several groups
    • R. Ostermark A hybrid genetic fuzzy neural network algorithm designed for classification problems involving several groups Fuzzy Sets and Systems 114 2000 311 324
    • (2000) Fuzzy Sets and Systems , vol.114 , pp. 311-324
    • Ostermark, R.1
  • 50
    • 0038232428 scopus 로고    scopus 로고
    • An empirical study of design and testing of hybrid evolutionary-neural approach for classification
    • DOI 10.1016/S0305-0483(01)00031-7, PII S0305048301000317
    • P. Pendharkar An empirical study of design and testing of hybrid evolutionary-neural approach for classification Omega 29 2001 361 374 (Pubitemid 33628761)
    • (2001) Omega , vol.29 , Issue.4 , pp. 361-374
    • Pendharkar, P.C.1
  • 51
    • 13544265385 scopus 로고    scopus 로고
    • A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem
    • DOI 10.1016/j.cor.2004.06.023, PII S0305054804001558, Application of Neural Networks
    • P.C. Pendharkar A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem Computers & Operations Research 32 2005 2561 2582 (Pubitemid 40219761)
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2561-2582
    • Pendharkar, P.C.1
  • 52
    • 56349133338 scopus 로고    scopus 로고
    • A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems
    • K. Polat, and S. Gunes A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems Expert Systems with Applications 36 2009 1587 1592
    • (2009) Expert Systems with Applications , vol.36 , pp. 1587-1592
    • Polat, K.1    Gunes, S.2
  • 54
    • 33751402587 scopus 로고    scopus 로고
    • Constructing of the risk classification model of cervical cancer by artificial neural network
    • DOI 10.1016/j.eswa.2006.02.020, PII S0957417406000856
    • X. Qiu, N. Tao, Y. Tan, and X. Wu Constructing of the risk classification model of cervical cancer by artificial neural network Expert Systems with Applications 32 2007 1094 1099 (Pubitemid 44821798)
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1094-1099
    • Qiu, X.1    Tao, N.2    Tan, Y.3    Wu, X.4
  • 58
    • 70350495365 scopus 로고    scopus 로고
    • Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models
    • G. Sahoo, S. Schladow, and J. Reuter Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models Journal of Hydrology 378 2009 325 342
    • (2009) Journal of Hydrology , vol.378 , pp. 325-342
    • Sahoo, G.1    Schladow, S.2    Reuter, J.3
  • 60
    • 54449100428 scopus 로고    scopus 로고
    • Data classification with multilayer perceptrons using a generalized error function
    • L. Silva, J. Marques, and L.A. Alexandre Data classification with multilayer perceptrons using a generalized error function Neural Networks 21 2008 1302 1310
    • (2008) Neural Networks , vol.21 , pp. 1302-1310
    • Silva, L.1    Marques, J.2    Alexandre, L.A.3
  • 61
    • 26444564627 scopus 로고    scopus 로고
    • Neuro-fuzzy network for the classification of buried pipe defects
    • DOI 10.1016/j.autcon.2005.02.005, PII S0926580505000440
    • S.K. Sinha, and P.W. Fieguth Neuro-fuzzy network for the classification of buried pipe defects Automation in Construction 15 2006 73 83 (Pubitemid 41436347)
    • (2006) Automation in Construction , vol.15 , Issue.1 , pp. 73-83
    • Sinha, S.K.1    Fieguth, P.W.2
  • 62
    • 0001352933 scopus 로고
    • Some examples of discrimination
    • C.A. Smith Some examples of discrimination Annals of Eugenics 13 1947 272 282
    • (1947) Annals of Eugenics , vol.13 , pp. 272-282
    • Smith, C.A.1
  • 63
    • 18144420028 scopus 로고    scopus 로고
    • Support vector machines for classification of homo-oligomeric proteins by incorporating subsequence distributions
    • DOI 10.1016/j.theochem.2005.02.002, PII S0166128005000898
    • J. Song, and H. Tang Support vector machines for classification of homo-oligomeric proteins by incorporating subsequence distributions Journal of Molecular Structure: THEOCHEM 722 2005 97 101 (Pubitemid 40623178)
    • (2005) Journal of Molecular Structure: THEOCHEM , vol.722 , Issue.1-3 , pp. 97-101
    • Song, J.1    Tang, H.2
  • 64
    • 71749120142 scopus 로고    scopus 로고
    • Classification of sleep apnea by using wavelet transform and artificial neural networks
    • M. Tagluk, M. Akin, and N. Sezgin Classification of sleep apnea by using wavelet transform and artificial neural networks Expert Systems with Applications 37 2010 1600 1607
    • (2010) Expert Systems with Applications , vol.37 , pp. 1600-1607
    • Tagluk, M.1    Akin, M.2    Sezgin, N.3
  • 65
    • 49549093161 scopus 로고    scopus 로고
    • Financial decision support using neural networks and support vector machines
    • C. Tsai Financial decision support using neural networks and support vector machines Expert Systems 25 4 2008 380 393
    • (2008) Expert Systems , vol.25 , Issue.4 , pp. 380-393
    • Tsai, C.1
  • 67
    • 1842451173 scopus 로고    scopus 로고
    • A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection
    • DOI 10.1111/1539-6975.00023
    • S. Viaene, R. Derrig, B. Baesens, and G. Dadene A comparison of state-of-the art classification techniques for expert automobile insurance claim fraud detection The Journal of Risk and Insurance 69 3 2002 373 421 (Pubitemid 40830725)
    • (2002) Journal of Risk and Insurance , vol.69 , Issue.3 , pp. 373-421
    • Viaene, S.1    Derrig, R.A.2    Baesens, B.3    Dedene, G.4
  • 68
    • 77649237177 scopus 로고    scopus 로고
    • Tumor classification by combining PNN classifier ensemble with neighborhood roughest based gene reduction
    • S. Wang, X. Li, S. Zhang, J. Gui, and D. Huang Tumor classification by combining PNN classifier ensemble with neighborhood roughest based gene reduction Computers in Biology and Medicine 40 2010 179 189
    • (2010) Computers in Biology and Medicine , vol.40 , pp. 179-189
    • Wang, S.1    Li, X.2    Zhang, S.3    Gui, J.4    Huang, D.5
  • 70
    • 0035480297 scopus 로고    scopus 로고
    • An investigation of neural networks for linear time-series forecasting
    • G.P. Zhang An investigation of neural networks for linear time-series forecasting Computers and Operations Research 28 2001 1112 1183
    • (2001) Computers and Operations Research , vol.28 , pp. 1112-1183
    • Zhang, G.P.1
  • 71
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • PII S0169207097000447
    • G. Zhang, B.E. Patuwo, and M.Y. Hu Forecasting with artificial neural networks: The state of the art International Journal of Forecasting 14 1998 35 62 (Pubitemid 128340470)
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy Patuwo, B.2    Y. Hu, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.