메뉴 건너뛰기




Volumn 5, Issue 3, 2010, Pages 214-228

Meta-learning in grid-based data mining systems

Author keywords

Data mining; Distributed datasets; Grid computing; Meta learning; Web service resource framework; WSRF

Indexed keywords

GRID COMPUTING; LARGE DATASET; LEARNING SYSTEMS; WEB SERVICES;

EID: 80155194189     PISSN: 17543916     EISSN: 17543924     Source Type: Journal    
DOI: 10.1504/IJCNDS.2010.034945     Document Type: Article
Times cited : (4)

References (18)
  • 3
    • 4243061781 scopus 로고    scopus 로고
    • The knowledge grid: An architecture for distributed knowledge discovery
    • Cannataro, M. and Talia, D. (2003) 'The knowledge grid: an architecture for distributed knowledge discovery', Commun. ACM, Vol. 46, No. 1, pp. 89-93.
    • (2003) Commun. ACM , vol.46 , Issue.1 , pp. 89-93
    • Cannataro, M.1    Talia, D.2
  • 4
    • 80052316582 scopus 로고    scopus 로고
    • TeraGrid: Analysis of organization, system architecture, and middleware enabling new types of applications
    • L. Grandinetti (Ed.) IOS Press, Amsterdam
    • Catlett, C. et al. (2007) 'TeraGrid: analysis of organization, system architecture, and middleware enabling new types of applications', in L. Grandinetti (Ed.): Advances in Parallel Computing, pp. 225-249, IOS Press, Amsterdam.
    • (2007) Advances in Parallel Computing , pp. 225-249
    • Catlett, C.1
  • 7
    • 10444221273 scopus 로고    scopus 로고
    • (accessed on 12/1/2009)
    • Czajkowski, K. (2004) The WS-Resource Framework Version 1.0, Available at http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf (accessed on 12/1/2009).
    • (2004) The WS-Resource Framework Version 1.0
    • Czajkowski, K.1
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T.G. (2000) 'An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization', Machine Learning, Vol. 40, No. 2, pp. 139-157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 11
    • 26944450174 scopus 로고    scopus 로고
    • Grid-enabled weka: A toolkit for machine learning on the grid
    • Khoussainov, R., Zuo, X. and Kushmerick, N. (2004) 'Grid-enabled Weka: a toolkit for machine learning on the grid', ERCIM News, No. 59.
    • (2004) ERCIM News , Issue.59
    • Khoussainov, R.1    Zuo, X.2    Kushmerick, N.3
  • 13
    • 0002522158 scopus 로고    scopus 로고
    • Meta-learning in distributed data mining systems: Issues and approaches
    • H. Kargupta and P. Chan (Eds.) MIT/AAAI Press
    • Prodromidis, A. and Chan, P. (2000) 'Meta-learning in distributed data mining systems: issues and approaches', in H. Kargupta and P. Chan (Eds.): Advances of Distributed Data Mining, pp. 81-114, MIT/AAAI Press.
    • (2000) Advances of Distributed Data Mining , pp. 81-114
    • Prodromidis, A.1    Chan, P.2
  • 15
    • 26944485234 scopus 로고    scopus 로고
    • Improving distributed data mining techniques by means of a grid infrastructure
    • Cyprus, October
    • Sanchez, A., Pena Sanchez, J.M., Perez, M.S., Robles, V. and Herrero, P. (2004) 'Improving distributed data mining techniques by means of a grid infrastructure', OTM Workshops, LNCS 3292, Cyprus, October, pp. 111-122.
    • (2004) OTM Workshops, LNCS 3292 , pp. 111-122
    • Sanchez, A.1    Pena Sanchez, J.M.2    Perez, M.S.3    Robles, V.4    Herrero, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.