메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Analyzing tweets to identify malicious messages

Author keywords

machine learning; phishing; social networking; spam; Twitter

Indexed keywords

FACEBOOK; LOGISTIC REGRESSION MODELS; PHISHERS; PHISHING; PHONE CALLS; SPAM; SPAM EMAILS; SPAM MESSAGES; SPAMMERS; TWITTER; WEB FORMS;

EID: 80155131180     PISSN: 21540357     EISSN: 21540373     Source Type: Conference Proceeding    
DOI: 10.1109/EIT.2011.5978594     Document Type: Conference Paper
Times cited : (21)

References (11)
  • 1
    • 17644426539 scopus 로고    scopus 로고
    • The effects of participation on the ability to judge deceit
    • N. Dunbar, et al., "The effects of participation on the ability to judge deceit," Communication Reports, vol. 16, pp. 23-33, 2003.
    • (2003) Communication Reports , vol.16 , pp. 23-33
    • Dunbar, N.1
  • 4
    • 84864100267 scopus 로고    scopus 로고
    • A study on social network spam
    • presented at the
    • G. Stringhini, et al., "A Study on Social Network Spam," presented at the Graduate Student Workshop, 2010.
    • (2010) Graduate Student Workshop
    • Stringhini, G.1
  • 11
    • 78649238565 scopus 로고    scopus 로고
    • Phishing using a modified bayesian technique
    • Bloomington, Minnesota
    • K. Beck and J. Zhan, "Phishing Using A Modified Bayesian Technique," in SocialCom 2010, Bloomington, Minnesota, 2010.
    • (2010) SocialCom 2010
    • Beck, K.1    Zhan, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.