메뉴 건너뛰기




Volumn 407, Issue 1-4, 2011, Pages 73-80

Clustering streamflow time series for regional classification

Author keywords

ARMA models; Autoregressive metric; Hydrologic regionalization; Streamflow series; Time series clustering

Indexed keywords

ARMA MODEL; AUTO-REGRESSIVE; EMPIRICAL STUDIES; ESTIMATED PARAMETER; EUCLIDEAN DISTANCE; HYDROLOGIC REGIONALIZATION; HYDROLOGIC TIME SERIES; LINEAR MODEL; LONG MEMORIES; MAHALANOBIS DISTANCES; REGRESSION COEFFICIENT; TEMPORAL DYNAMICS; TIME SERIES CLUSTERING; WASHINGTON STATE;

EID: 80055122620     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2011.07.008     Document Type: Article
Times cited : (29)

References (51)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974, AC-19:203-217.
    • (1974) IEEE Transactions on Automatic Control , vol.AC 19 , pp. 203-217
    • Akaike, H.1
  • 2
    • 80055122635 scopus 로고    scopus 로고
    • Hydrologic Similarity of River Basins Through Regime Stability
    • Working paper 2003-03, Politecnico, Torino.
    • Barberis, C., Molnar, P., Claps, P., Burlando, P. (2003). Hydrologic Similarity of River Basins Through Regime Stability. Working paper 2003-03, Politecnico, Torino.
    • (2003)
    • Barberis, C.1    Molnar, P.2    Claps, P.3    Burlando, P.4
  • 4
    • 0000286376 scopus 로고
    • Using dynamic time warping to find patterns in time series
    • Proceedings of the AAAI-94 Workshop of SIGKDD.
    • Berndt, D., Clifford, J., 1994. Using dynamic time warping to find patterns in time series. In: Proceedings of the AAAI-94 Workshop of SIGKDD, pp. 229-248.
    • (1994) , pp. 229-248
    • Berndt, D.1    Clifford, J.2
  • 5
    • 0036211645 scopus 로고    scopus 로고
    • Computation of the forecast coefficients for multi-step prediction of long-range dependent time series
    • Bhansali R., Kokoszka P. Computation of the forecast coefficients for multi-step prediction of long-range dependent time series. International Journal of Forecasting 2002, 18:181-206.
    • (2002) International Journal of Forecasting , vol.18 , pp. 181-206
    • Bhansali, R.1    Kokoszka, P.2
  • 8
    • 0025572097 scopus 로고
    • Evaluation of regional flood frequency analysis with a region of influence approach
    • Burn D.H. Evaluation of regional flood frequency analysis with a region of influence approach. Water Resources Research 1990, 26:2257-2265.
    • (1990) Water Resources Research , vol.26 , pp. 2257-2265
    • Burn, D.H.1
  • 9
    • 0031405337 scopus 로고    scopus 로고
    • Catchment similarity for regional flood frequency analysis using seasonality measures
    • Burn D.H. Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of Hydrology 1997, 202:212-230.
    • (1997) Journal of Hydrology , vol.202 , pp. 212-230
    • Burn, D.H.1
  • 10
    • 0027334602 scopus 로고
    • Estimation of hydrological parameters at ungauged catchments
    • Burn D.H., Boorman D.B. Estimation of hydrological parameters at ungauged catchments. Journal of Hydrology 1993, 143:429-454.
    • (1993) Journal of Hydrology , vol.143 , pp. 429-454
    • Burn, D.H.1    Boorman, D.B.2
  • 12
    • 0035977696 scopus 로고    scopus 로고
    • Assessing the effectiveness of hydrological similarity measures for flood frequency analysis
    • Castellarin A., Burn D.H., Brath A. Assessing the effectiveness of hydrological similarity measures for flood frequency analysis. Journal of Hydrology 2001, 241:270-285.
    • (2001) Journal of Hydrology , vol.241 , pp. 270-285
    • Castellarin, A.1    Burn, D.H.2    Brath, A.3
  • 13
    • 0032688141 scopus 로고    scopus 로고
    • Efficient time series matching by wavelets
    • Chan K., Fu A.W. Efficient time series matching by wavelets. ICDE 1999, 126-133.
    • (1999) ICDE , pp. 126-133
    • Chan, K.1    Fu, A.W.2
  • 16
    • 42049091727 scopus 로고    scopus 로고
    • Estimation of peak discharges for rural,unregulated streams in Western Oregon
    • US Geological Survey Scientific Investigation Report 2005-5116.
    • Cooper, R.M., 2005. Estimation of peak discharges for rural,unregulated streams in Western Oregon. US Geological Survey Scientific Investigation Report 2005-5116.
    • (2005)
    • Cooper, R.M.1
  • 17
    • 12444323233 scopus 로고    scopus 로고
    • La metrica Autoregressiva tra modelli ARIMA: una procedura in linguaggio GAUSS
    • Corduas M. La metrica Autoregressiva tra modelli ARIMA: una procedura in linguaggio GAUSS. Quaderni di Statistica 2000, 2:1-37.
    • (2000) Quaderni di Statistica , vol.2 , pp. 1-37
    • Corduas, M.1
  • 18
    • 35748959377 scopus 로고    scopus 로고
    • Time series clustering and classification by the Autoregressive metric
    • Corduas M., Piccolo D. Time series clustering and classification by the Autoregressive metric. Computational Statistics & Data Analysis 2008, 52:1860-1872.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 1860-1872
    • Corduas, M.1    Piccolo, D.2
  • 19
    • 4444256218 scopus 로고    scopus 로고
    • Linear parametric models applied on daily hydrological series
    • Grimaldi S. Linear parametric models applied on daily hydrological series. Journal of Hydrologic Engineering 2004, 9:383-391.
    • (2004) Journal of Hydrologic Engineering , vol.9 , pp. 383-391
    • Grimaldi, S.1
  • 20
    • 67650304983 scopus 로고    scopus 로고
    • Water Resources Data-Oregon Water Year 2005
    • US Geological Survey Water Data Report OR-05-1.
    • Herret, T.A., Hess, G.W., Stewart, M.A., Ruppert, G.P., Courts, M.L., 2006. Water Resources Data-Oregon Water Year 2005. US Geological Survey Water Data Report OR-05-1.
    • (2006)
    • Herret, T.A.1    Hess, G.W.2    Stewart, M.A.3    Ruppert, G.P.4    Courts, M.L.5
  • 21
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: a survey and empirical demonstration
    • Keogh E., Kasetty S. On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Mining and Knowledge Discovery 2003, 7:349-371.
    • (2003) Data Mining and Knowledge Discovery , vol.7 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 22
    • 17144411804 scopus 로고    scopus 로고
    • Water Resources Data-Washington Water Year 2005
    • US Geological Survey Water Data Report WA-05-1.
    • Kimbrough, R.A., Ruppert, G.P., Wiggins, W.D., Smith, R.R., Kresch, D.L., 2005. Water Resources Data-Washington Water Year 2005. US Geological Survey Water Data Report WA-05-1.
    • (2005)
    • Kimbrough, R.A.1    Ruppert, G.P.2    Wiggins, W.D.3    Smith, R.R.4    Kresch, D.L.5
  • 23
    • 0003081894 scopus 로고
    • Fractional time series modelling
    • Li W.K., McLeod I. Fractional time series modelling. Biometrika 1986, 73:217-221.
    • (1986) Biometrika , vol.73 , pp. 217-221
    • Li, W.K.1    McLeod, I.2
  • 24
    • 77954384686 scopus 로고    scopus 로고
    • A new regionalization approach and its application to predict flow duration curve in ungauged basins
    • Li M., Shao Q., Zhang L., Chiew F.B. A new regionalization approach and its application to predict flow duration curve in ungauged basins. Journal of Hydrology 2010, 389:137-145.
    • (2010) Journal of Hydrology , vol.389 , pp. 137-145
    • Li, M.1    Shao, Q.2    Zhang, L.3    Chiew, F.B.4
  • 25
    • 24044470614 scopus 로고    scopus 로고
    • Clustering time series data - a survey
    • Liao T.W. Clustering time series data - a survey. Pattern Recognition 2005, 38:1857-1874.
    • (2005) Pattern Recognition , vol.38 , pp. 1857-1874
    • Liao, T.W.1
  • 28
    • 0015397231 scopus 로고
    • Problem decomposition and data reorganization by a clustering technique
    • McCormick W.T., Schweitzer P.J., White T.W. Problem decomposition and data reorganization by a clustering technique. Operation Research 1972, 20:993-1009.
    • (1972) Operation Research , vol.20 , pp. 993-1009
    • McCormick, W.T.1    Schweitzer, P.J.2    White, T.W.3
  • 29
    • 1542320086 scopus 로고    scopus 로고
    • Regionalization of catchment model parameters
    • Merz B., Bloeschl G. Regionalization of catchment model parameters. Journal of Hydrology 2004, 287:95-123.
    • (2004) Journal of Hydrology , vol.287 , pp. 95-123
    • Merz, B.1    Bloeschl, G.2
  • 30
    • 0034065536 scopus 로고    scopus 로고
    • A seasonal fractional model applied to the Nile River monthly flows at Aswan
    • Montanari A., Rosso R., Taqqu M.S. A seasonal fractional model applied to the Nile River monthly flows at Aswan. Water Resources Research 2000, 36:1249-1259.
    • (2000) Water Resources Research , vol.36 , pp. 1249-1259
    • Montanari, A.1    Rosso, R.2    Taqqu, M.S.3
  • 31
    • 0025570550 scopus 로고
    • Identification of homogenous regions for the purposes of regionalization
    • Nathan R.J., Mcmahon T.A. Identification of homogenous regions for the purposes of regionalization. Journal of Hydrology 1990, 121:217-238.
    • (1990) Journal of Hydrology , vol.121 , pp. 217-238
    • Nathan, R.J.1    Mcmahon, T.A.2
  • 32
    • 0032666315 scopus 로고    scopus 로고
    • Data mining massive time series astronomical data: challenges, problems and solutions
    • Ng M.K., Huang Z. Data mining massive time series astronomical data: challenges, problems and solutions. Information and Software Technology 1999, 41:545-556.
    • (1999) Information and Software Technology , vol.41 , pp. 545-556
    • Ng, M.K.1    Huang, Z.2
  • 34
    • 84981470151 scopus 로고
    • A distance measure for classifying ARIMA models
    • Piccolo D. A distance measure for classifying ARIMA models. Journal of Time Series Analysis 1990, 11:153-164.
    • (1990) Journal of Time Series Analysis , vol.11 , pp. 153-164
    • Piccolo, D.1
  • 35
    • 80055122634 scopus 로고    scopus 로고
    • Statistical issues on the AR metric in time series
    • Padua: Cleup
    • Piccolo, D., 2007. Statistical issues on the AR metric in time series. In: Proceedings of the SIS Intermediate Conference, Padua: Cleup, pp. 221-232.
    • (2007) Proceedings of the SIS Intermediate Conference , pp. 221-232
    • Piccolo, D.1
  • 36
    • 0030159494 scopus 로고    scopus 로고
    • Relationships between catchment attributes and hydrological response characteristics in small Australian mountain ash catchments
    • Post D.A., Jakeman A.J. Relationships between catchment attributes and hydrological response characteristics in small Australian mountain ash catchments. Hydrological Processes 1996, 10:877-892.
    • (1996) Hydrological Processes , vol.10 , pp. 877-892
    • Post, D.A.1    Jakeman, A.J.2
  • 37
    • 0002644699 scopus 로고    scopus 로고
    • Wavelets and time-dependent spectral analysis
    • Priestley M.B. Wavelets and time-dependent spectral analysis. Journal of Time Series Analysis 1996, 17:85-103.
    • (1996) Journal of Time Series Analysis , vol.17 , pp. 85-103
    • Priestley, M.B.1
  • 39
    • 33744917242 scopus 로고    scopus 로고
    • Predicting streamflow regime metrics for ungauged streams in Colorado, Washington, Oregon
    • Sanborn S.C., Bledsoe B.P. Predicting streamflow regime metrics for ungauged streams in Colorado, Washington, Oregon. Journal of Hydrology 2006, 325:241-261.
    • (2006) Journal of Hydrology , vol.325 , pp. 241-261
    • Sanborn, S.C.1    Bledsoe, B.P.2
  • 40
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978, 6:461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 41
    • 70350324040 scopus 로고
    • Discriminant analysis for time series
    • North Holland, New York
    • Shumway R.H. Discriminant analysis for time series. Handbook of Statistics 1982, vol. 2:1-46. North Holland, New York.
    • (1982) Handbook of Statistics , vol.2 , pp. 1-46
    • Shumway, R.H.1
  • 42
    • 0001618861 scopus 로고
    • Model flow duration and streamflow variability
    • Singh K.P. Model flow duration and streamflow variability. Water Resource Research 1971, 7:1031-1036.
    • (1971) Water Resource Research , vol.7 , pp. 1031-1036
    • Singh, K.P.1
  • 43
    • 0032003006 scopus 로고    scopus 로고
    • Stream flow characterization and feature detection using wavelet transform
    • Smith L.C., Turcotte D., Isacks B.L. Stream flow characterization and feature detection using wavelet transform. Hydrological Processes 1998, 12:233-249.
    • (1998) Hydrological Processes , vol.12 , pp. 233-249
    • Smith, L.C.1    Turcotte, D.2    Isacks, B.L.3
  • 46
    • 0020391930 scopus 로고
    • Comparing methods of hydrologic regionalization
    • Tasker G.D. Comparing methods of hydrologic regionalization. Water Resources Bullettin 1982, 18:965-975.
    • (1982) Water Resources Bullettin , vol.18 , pp. 965-975
    • Tasker, G.D.1
  • 47
    • 33644505802 scopus 로고    scopus 로고
    • Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty
    • Wagener T., Wheater H.S. Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty. Journal of Hydrology 2006, 320:132-154.
    • (2006) Journal of Hydrology , vol.320 , pp. 132-154
    • Wagener, T.1    Wheater, H.S.2
  • 50
    • 34248171887 scopus 로고    scopus 로고
    • Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins
    • Yadav M., Wagener T., Gupta H. Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources 2007, 30:1756-1774.
    • (2007) Advances in Water Resources , vol.30 , pp. 1756-1774
    • Yadav, M.1    Wagener, T.2    Gupta, H.3
  • 51
    • 84858322527 scopus 로고    scopus 로고
    • Regionalization of Daily Stream Flow in Australia Using Wavelets and k-Means Analysis
    • Technical Report, .
    • Zoppou, C., Nielsen, O.M., Zhang, L., 2002. Regionalization of Daily Stream Flow in Australia Using Wavelets and k-Means Analysis, Technical Report, http://wwwmaths.anu.edu.au/research.reports.
    • (2002)
    • Zoppou, C.1    Nielsen, O.M.2    Zhang, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.