메뉴 건너뛰기




Volumn 6, Issue 1, 2011, Pages 251-261

Assessing landslide hazard using artificial neural network: Case study of Mazandaran, Iran

Author keywords

Artificial neural network; Expert system; Geology; Landslides; Mazandaran

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CONFIDENCE INTERVAL; EXPERT SYSTEM; FAILURE ANALYSIS; GUIDELINE; HAZARD ASSESSMENT; HAZARD MANAGEMENT; LAND USE PLANNING; LANDSLIDE; PROBABILITY; SHEAR STRESS; SLOPE FAILURE; SLOPE STABILITY; STABILITY ANALYSIS;

EID: 80055101751     PISSN: 18424090     EISSN: 1844489X     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (12)

References (34)
  • 2
    • 12344302230 scopus 로고    scopus 로고
    • Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River. Niigata Prefecture, Japan
    • Ayalew, L., Yamagishi, H., & Ugawa, N. 2004. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River. Niigata Prefecture, Japan, Landslides, 1(1), 73-81.
    • (2004) Landslides , vol.1 , Issue.1 , pp. 73-81
    • Ayalew, L.1    Yamagishi, H.2    Ugawa, N.3
  • 3
    • 84993995958 scopus 로고
    • The Use of the Slip Circle in the Stability Analysis of Slope
    • Bishop, A. W. 1955. The Use of the Slip Circle in the Stability Analysis of Slope. Geotechnique, 5(1), 7-17.
    • (1955) Geotechnique , vol.5 , Issue.1 , pp. 7-17
    • Bishop, A.W.1
  • 5
    • 0005210482 scopus 로고
    • Soil classification by neural-network
    • Cal, Y. 1995. Soil classification by neural-network. Advances in Engineering Software, 22(2), 95-97.
    • (1995) Advances in Engineering Software , vol.22 , Issue.2 , pp. 95-97
    • Cal, Y.1
  • 6
    • 34547309618 scopus 로고    scopus 로고
    • Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya
    • Champati ray, P. K., Dimri, S., Lakhera, R. C. & Sati, Santosh. 2007. Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides, 4(2), 101-111.
    • (2007) Landslides , vol.4 , Issue.2 , pp. 101-111
    • Champati ray, P.K.1    Dimri, S.2    Lakhera, R.C.3    Santosh S4
  • 7
    • 0028977232 scopus 로고
    • Neural network: An alternative to pile driving formulas
    • Chan, W. T., Chow, y. K. & Liu, L. F. 1995. Neural network: An alternative to pile driving formulas, J. Computers and Geotechnics, 17, 135-156.
    • (1995) J. Computers and Geotechnics , vol.17 , pp. 135-156
    • Chan, W.T.1    Chow, K.2    Liu, L.F.3
  • 10
    • 0020642473 scopus 로고
    • The Denholm Landslide, Saskatchewan, Part I
    • Christiansen, E. A. 1983. The Denholm Landslide, Saskatchewan, Part I. Canadian Geotechnical Journal, 20, 197-207.
    • (1983) Canadian Geotechnical Journal , vol.20 , pp. 197-207
    • Christiansen, E.A.1
  • 11
    • 23944514807 scopus 로고    scopus 로고
    • Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees Spain)
    • Corominas, J., Moya, J., Ledesma, A., Lloret, A. & Gili, J. A. 2005. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides, 2(2) 83-96.
    • (2005) Landslides , vol.2 , Issue.2 , pp. 83-96
    • Corominas, J.1    Moya, J.2    Ledesma, A.3    Lloret, A.4    Gili, J.A.5
  • 12
    • 7044226255 scopus 로고    scopus 로고
    • Landslide types and processes
    • Turner A.K.; Shuster R.L. (eds) Landslides. Transp Res Board, Spec Rep
    • Cruden, D.M. & Varnes, D. J. 1996. Landslide types and processes. In: Turner A.K.; Shuster R.L. (eds) Landslides. Investigation and Mitigation. Transp Res Board, Spec Rep 247, 36-75.
    • (1996) Investigation and Mitigation , vol.247 , pp. 36-75
    • Cruden, D.M.1    Varnes, D.J.2
  • 13
    • 0001690750 scopus 로고    scopus 로고
    • State of the art: limit equilibrium and finite-element analysis of slopes
    • Duncan, J. M. 1996. State of the art: limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical Engineering, 122, 577-596.
    • (1996) Journal of Geotechnical Engineering , vol.122 , pp. 577-596
    • Duncan, J.M.1
  • 14
    • 0025586388 scopus 로고
    • Instrumented Laboratory Flow Slides
    • Eckersley, J. D. 1990. Instrumented Laboratory Flow Slides. Geotechnique, 44(3), 489-502.
    • (1990) Geotechnique , vol.44 , Issue.3 , pp. 489-502
    • Eckersley, J.D.1
  • 16
    • 70649103876 scopus 로고    scopus 로고
    • A statistical assessment on international landslide literature (1945-2008)
    • Gokceoglu, C. & Sezer, E. 2009. A statistical assessment on international landslide literature (1945-2008). Landslides, 6(4), 345-351.
    • (2009) Landslides , vol.6 , Issue.4 , pp. 345-351
    • Gokceoglu, C.1    Sezer, E.2
  • 17
    • 33644548650 scopus 로고    scopus 로고
    • Analysis of landslide susceptibility in the Suusamyr region, Tien Shan: statistical and geotechnical approach
    • Havenith, H.B., Strom, A., Caceres, F. & Pirard. 2006. Analysis of landslide susceptibility in the Suusamyr region, Tien Shan: statistical and geotechnical approach. Landslides, 3(1), 39-50.
    • (2006) Landslides , vol.3 , Issue.1 , pp. 39-50
    • Havenith, H.B.1    Strom, A.2    Caceres, F.3    Pirard4
  • 18
    • 0025751820 scopus 로고
    • Approximation capability of multilayer feed forward networks as universal approximators
    • Hornik, K. 1991. Approximation capability of multilayer feed forward networks as universal approximators. Neural Networks, 4, 251-257.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 19
    • 36849021068 scopus 로고    scopus 로고
    • Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea
    • Lee, S., Ryu, J.H. & Kim, I.S. 2007.Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides, 4(4), 327-338.
    • (2007) Landslides , vol.4 , Issue.4 , pp. 327-338
    • Lee, S.1    Ryu, J.H.2    Kim, I.S.3
  • 20
    • 0346352284 scopus 로고    scopus 로고
    • Neural networks applications in the geosciences, An introduction
    • Lees, B. G. 1996. Neural networks applications in the geosciences, An introduction. Computer and Geosciences, 22, 955-957.
    • (1996) Computer and Geosciences , vol.22 , pp. 955-957
    • Lees, B.G.1
  • 21
    • 0030679134 scopus 로고    scopus 로고
    • Geomaterial modeling using artificial neural networks, Artificial Neural Networks for Civil Engineers: Fundamentals and Applications
    • Penumadu, D. & Jean-Lou, C. 1997. Geomaterial modeling using artificial neural networks, Artificial Neural Networks for Civil Engineers: Fundamentals and Applications. ASCE, 160-184.
    • (1997) ASCE , pp. 160-184
    • Penumadu, D.1    Jean-Lou, C.2
  • 22
    • 0032786618 scopus 로고    scopus 로고
    • Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)
    • Penumadu, D. & Zhao, R. 1999. Triaxial compression behavior of sand and gravel using artificial neural networks (ANN). J. Computers and Geotechnics, 24, 207-230.
    • (1999) J. Computers and Geotechnics , vol.24 , pp. 207-230
    • Penumadu, D.1    Zhao, R.2
  • 23
    • 29144491477 scopus 로고    scopus 로고
    • A statistical approach to landslide risk modelling at basin scale: from landslide susceptibility to quantitative risk assessment
    • Remondo, J., Bonachea, J & Cendrero, A. 2005. A statistical approach to landslide risk modelling at basin scale: from landslide susceptibility to quantitative risk assessment. Landslides, 2(4), 321-328.
    • (2005) Landslides , vol.2 , Issue.4 , pp. 321-328
    • Remondo, J.1    Bonachea, J.2    Cendrero, A.3
  • 26
    • 0000646059 scopus 로고
    • Learning Internal Representations by Error Propagation
    • Rumelhart DE editor. Cambridge, MA: MIT Press
    • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. 1986. Learning Internal Representations by Error Propagation. In: Rumelhart DE, editor. Parallel Distributed Processing. Cambridge, MA: MIT Press, 318-362.
    • (1986) Parallel Distributed Processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 27
    • 17444397755 scopus 로고    scopus 로고
    • An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas
    • Saha, A. K. Gupta, R. P, Sarkar, I., Arora, M. K. & Csaplovics, E. 2005. An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides, 2(1), 61-69.
    • (2005) Landslides , vol.2 , Issue.1 , pp. 61-69
    • Saha, A.K.1    Gupta, R.P.2    Sarkar, I.3    Arora, M.K.4    Csaplovics, E.5
  • 28
    • 23944467657 scopus 로고    scopus 로고
    • Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas
    • Sassa, K., Wang, G., Fukuoka, H., Wang, F., Ochiai, T., Sugiyama, M., & Sekiguchi, T. 2004. Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas. Landslides, 1(3), 231-235.
    • (2004) Landslides , vol.1 , Issue.3 , pp. 231-235
    • Sassa, K.1    Wang, G.2    Fukuoka, H.3    Wang, F.4    Ochiai, T.5    Sugiyama, M.6    Sekiguchi, T.7
  • 29
    • 0031941646 scopus 로고    scopus 로고
    • Constitutive modeling of geomaterials from non-uniform material Tests
    • Sidarta, D. E. & Ghaboussi, J. 1998. Constitutive modeling of geomaterials from non-uniform material Tests, J. Computers & Geomechanics, 22(10), 53-71.
    • (1998) J. Computers & Geomechanics , vol.22 , Issue.10 , pp. 53-71
    • Sidarta, D.E.1    Ghaboussi, J.2
  • 33
    • 0032194440 scopus 로고    scopus 로고
    • Modeling of soil behavior with a recurrent neural Network
    • Zhu, J. H., Zaman, M. M. & Anderson, S. A. 1998a. Modeling of soil behavior with a recurrent neural Network. Canadian Geotech. J., 35(5), 858-872.
    • (1998) Canadian Geotech. J. , vol.35 , Issue.5 , pp. 858-872
    • Zhu, J.H.1    Zaman, M.M.2    Anderson, S.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.