메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 356-361

A feasible nonconvex relaxation approach to feature selection

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE UPDATE; EFFICIENT METHOD; MINIMAX; MINIMIZATION METHODS; NONCONVEX; OPTIMIZATION FRAMEWORK; OPTIMIZATION PROBLEMS; SMOOTHLY CLIPPED ABSOLUTE DEVIATION; SUPERVISED LEARNING PROBLEMS; TUNING PARAMETER; VARIABLE SELECTION PROBLEMS;

EID: 80055039401     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (85)

References (14)
  • 1
    • 80052848936 scopus 로고    scopus 로고
    • Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
    • To appear in the
    • Breheny, P., and Huang, J. 2010. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. To appear in the Annals of Applied Statistics.
    • (2010) Annals of Applied Statistics
    • Breheny, P.1    Huang, J.2
  • 4
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its Oracle properties
    • Fan, J., and Li, R. 2001. Variable selection via nonconcave penalized likelihood and its Oracle properties. Journal of the American Statistical Association 96:1348-1361.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1361
    • Fan, J.1    Li, R.2
  • 6
    • 26444617168 scopus 로고    scopus 로고
    • Variable selection using MM algorithms
    • DOI 10.1214/009053605000000200
    • Hunter, D. R., and Li, R. 2005. Variable selection using MM algorithms. The Annals of Statistics 33:1617-1642. (Pubitemid 41423982)
    • (2005) Annals of Statistics , vol.33 , Issue.4 , pp. 1617-1642
    • Hunter, D.R.1    Li, R.2
  • 11
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • Zhang, C.-H. 2010a. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics 38:894-942.
    • (2010) The Annals of Statistics , vol.38 , pp. 894-942
    • Zhang, C.-H.1
  • 12
    • 77951191949 scopus 로고    scopus 로고
    • Analysis of multi-stage convex relaxation for sparse regularization
    • Zhang, T. 2010b. Analysis of multi-stage convex relaxation for sparse regularization. Journal of Machine Learning Research 11:1081-1107.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 1081-1107
    • Zhang, T.1
  • 13
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • Zou, H., and Li, R. 2008. One-step sparse estimates in nonconcave penalized likelihood models. The Annals of Statistics 36(4):1509-1533.
    • (2008) The Annals of Statistics , vol.36 , Issue.4 , pp. 1509-1533
    • Zou, H.1    Li, R.2
  • 14
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its Oracle properties
    • Zou, H. 2006. The adaptive lasso and its Oracle properties. Journal of the American Statistical Association 101(476):1418-1429.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.