-
1
-
-
80052848936
-
Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
-
To appear in the
-
Breheny, P., and Huang, J. 2010. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. To appear in the Annals of Applied Statistics.
-
(2010)
Annals of Applied Statistics
-
-
Breheny, P.1
Huang, J.2
-
3
-
-
3242708140
-
Least angle regression (with discussions)
-
Efron, B.; Hastie, T.; Johnstone, I.; and Tibshirani, R. 2004. Least angle regression (with discussions). The Annals of Statistics 32(2):407-499.
-
(2004)
The Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
4
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its Oracle properties
-
Fan, J., and Li, R. 2001. Variable selection via nonconcave penalized likelihood and its Oracle properties. Journal of the American Statistical Association 96:1348-1361.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 1348-1361
-
-
Fan, J.1
Li, R.2
-
5
-
-
45849107328
-
Pathwise coordinate optimization
-
Friedman, J. H.; Hastie, T.; Hoefling, H.; and Tibshirani, R. 2007. Pathwise coordinate optimization. The Annals of Applied Statistics 2(1):302-332.
-
(2007)
The Annals of Applied Statistics
, vol.2
, Issue.1
, pp. 302-332
-
-
Friedman, J.H.1
Hastie, T.2
Hoefling, H.3
Tibshirani, R.4
-
6
-
-
26444617168
-
Variable selection using MM algorithms
-
DOI 10.1214/009053605000000200
-
Hunter, D. R., and Li, R. 2005. Variable selection using MM algorithms. The Annals of Statistics 33:1617-1642. (Pubitemid 41423982)
-
(2005)
Annals of Statistics
, vol.33
, Issue.4
, pp. 1617-1642
-
-
Hunter, D.R.1
Li, R.2
-
8
-
-
77956894153
-
-
Technical report, Department of Statistics, Stanford University
-
Mazumder, R.; Friedman, J.; and Hastie, T. 2009. Sparsenetxoordinate descent with non-convex penalties. Technical report, Department of Statistics, Stanford University.
-
(2009)
Sparsenetxoordinate Descent with Non-convex Penalties
-
-
Mazumder, R.1
Friedman, J.2
Hastie, T.3
-
11
-
-
77649284492
-
Nearly unbiased variable selection under minimax concave penalty
-
Zhang, C.-H. 2010a. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics 38:894-942.
-
(2010)
The Annals of Statistics
, vol.38
, pp. 894-942
-
-
Zhang, C.-H.1
-
12
-
-
77951191949
-
Analysis of multi-stage convex relaxation for sparse regularization
-
Zhang, T. 2010b. Analysis of multi-stage convex relaxation for sparse regularization. Journal of Machine Learning Research 11:1081-1107.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1081-1107
-
-
Zhang, T.1
-
13
-
-
51049104549
-
One-step sparse estimates in nonconcave penalized likelihood models
-
Zou, H., and Li, R. 2008. One-step sparse estimates in nonconcave penalized likelihood models. The Annals of Statistics 36(4):1509-1533.
-
(2008)
The Annals of Statistics
, vol.36
, Issue.4
, pp. 1509-1533
-
-
Zou, H.1
Li, R.2
-
14
-
-
33846114377
-
The adaptive lasso and its Oracle properties
-
Zou, H. 2006. The adaptive lasso and its Oracle properties. Journal of the American Statistical Association 101(476):1418-1429.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.476
, pp. 1418-1429
-
-
Zou, H.1
|