메뉴 건너뛰기




Volumn 13, Issue 4, 2011, Pages 842-849

Modeling flood discharge at ungauged sites across Turkey using neuro-fuzzy and neural networks

Author keywords

Adaptive neuro fuzzy inference system; Neural networks; Regional flood frequency; Regression; Ungauged site

Indexed keywords


EID: 80054973993     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2010.046     Document Type: Article
Times cited : (29)

References (47)
  • 1
    • 0001954214 scopus 로고
    • The regions are dead; long live the regions. Methods of identifying and dispensing with regions for flood frequency analysis
    • Acreman, M. C. & Wiltshire, S. E. 1989 The regions are dead; long live the regions. Methods of identifying and dispensing with regions for flood frequency analysis. IAHS Publ. 187, 175-188.
    • (1989) IAHS Publ. , vol.187 , pp. 175-188
    • Acreman, M.C.1    Wiltshire, S.E.2
  • 2
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment estimation by feed forward back propagation method using hydro meteorological data
    • Alp, M. & Cigizoglu, H. K. 2007 Suspended sediment estimation by feed forward back propagation method using hydro meteorological data. Environ. Modell. Software 22(1), 2-13.
    • (2007) Environ. Modell. Software , vol.22 , Issue.1 , pp. 2-13
    • Alp, M.1    Cigizoglu, H.K.2
  • 3
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead, D. & Lowe, D. 1988 Multivariable functional interpolation and adaptive networks. Complex Syst. 2, 321-355.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 4
    • 0025047912 scopus 로고
    • An appraisal of the 'region of influence' approach to flood frequency analysis
    • Burn, D. H. 1990 An appraisal of the 'region of influence' approach to flood frequency analysis. Hydrol. Sci. J. 35(2), 149-165. (Pubitemid 236319)
    • (1990) Hydrol. Sci. J. , vol.35 , Issue.2 , pp. 149-165
    • Burn, D.H.1
  • 5
    • 0037903280 scopus 로고    scopus 로고
    • Modelling and forecasting of hydrological variables using artificial neural networks: The Kafue River sub-basin
    • Chibanga, R., Berlamont, J. & Vandewalle, J. 2003 Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin. Hydrol. Sci. J. 48(3), 363-379.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 363-379
    • Chibanga, R.1    Berlamont, J.2    Vandewalle, J.3
  • 6
    • 12544257806 scopus 로고    scopus 로고
    • Physiographical space-based kriging for regional flood frequency estimation at ungauged sites
    • Chokmani, K. & Ouarda, T. B. M. J. 2004 Physiographical space-based kriging for regional flood frequency estimation at ungauged sites. Wat. Res. Res. 40(12), W12514.
    • (2004) Wat. Res. Res. , vol.40 , Issue.12
    • Chokmani, K.1    Ouarda, T.B.M.J.2
  • 7
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu, H. K. 2003 Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48(3), 349-361.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 8
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu, H. K. & Kisi, O. 2005 Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nordic Hydrol. 36(1), 49-64. (Pubitemid 40620979)
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 9
    • 41749110021 scopus 로고    scopus 로고
    • Prediction of hydropower energy using ANN for the feasibility of hydropower plant installation to an existing irrigation dam
    • DOI 10.1007/s11269-007-9190-z
    • Cobaner, M., Haktanir, T. & Kisi, O. 2008 Prediction of hydropower energy using ANN for the feasibility of hydropower plant installation to an existing irrigation dam. Wat. Res. Mngmnt. 22, 757-774. (Pubitemid 351486334)
    • (2008) Water Resources Management , vol.22 , Issue.6 , pp. 757-774
    • Cobaner, M.1    Haktanir, T.2    Kisi, O.3
  • 10
    • 60549084178 scopus 로고    scopus 로고
    • Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data
    • Cobaner, M., Unal, B. & Kisi, O. 2009 Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. J. Hydrol. 367, 52-61.
    • (2009) J. Hydrol. , vol.367 , pp. 52-61
    • Cobaner, M.1    Unal, B.2    Kisi, O.3
  • 11
    • 14844292558 scopus 로고    scopus 로고
    • Improving daily reservoir inflow forecasts with model combination
    • DOI 10.1016/(ASCE)1084-0699(2005)10:2(91)
    • Coulibaly, P., Hache, M., Fortin, V. & Bobée, B. 2005 Improving daily reservoir inflow forecasting with model combination. J. Hydrol. Engng. 10(2), 91-99. (Pubitemid 40345616)
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.2 , pp. 91-99
    • Coulibaly, P.1    Hache, M.2    Fortin, V.3    Bobee, B.4
  • 12
    • 0036179143 scopus 로고    scopus 로고
    • The use of flood regime information in regional flood frequency analysis
    • Cunderlik, J. M. & Burn, D. H. 2002 The use of flood regime information in regional flood frequency analysis. Hydrol. Sci. J. 47, 77-92. (Pubitemid 34170227)
    • (2002) Hydrological Sciences Journal , vol.47 , Issue.1 , pp. 77-92
    • Cunderlik, J.M.1    Burn, D.H.2
  • 14
    • 32044443415 scopus 로고    scopus 로고
    • Flood estimation at ungauged sites using artificial neural networks
    • DOI 10.1016/j.jhydrol.2005.07.032, PII S0022169405003732
    • Dawson, C. W., Abrahart, R. J., Shamseldin, A. Y. & Wilby, R. L. 2006 Flood estimation at ungauged sites using artificial neural networks. J. Hydrol. 319, 391-409. (Pubitemid 43199910)
    • (2006) Journal of Hydrology , vol.319 , Issue.1-4 , pp. 391-409
    • Dawson, C.W.1    Abrahart, R.J.2    Shamseldin, A.Y.3    Wilby, R.L.4
  • 15
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson, C. W. & Wilby, R. L. 1998 An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J. 43(1), 47-66.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.L.2
  • 16
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • DOI 10.1191/030913301674775671
    • Dawson, C. W. & Wilby, R. L. 2001 Hydrological modeling using artificial neural networks. Progr. Phys. Geogr. 25(1), 80-108. (Pubitemid 33028258)
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 17
    • 0003578240 scopus 로고
    • An empirical study of learning speed in backpropagation networks
    • Carnegie Mellon University, Pittsburgh
    • Fahlman, S. E. 1988 An Empirical Study of Learning Speed in Backpropagation Networks. CMU-CS-88-162, School of Computer Science, Carnegie Mellon University, Pittsburgh.
    • (1988) CMU-CS-88-162, School of Computer Science
    • Fahlman, S.E.1
  • 18
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquaradt algorithm
    • Hagan, M. T. & Menhaj, M. B. 1994 Training feed forward networks with the Marquaradt algorithm. IEEE Trans. Neural Networks 6, 861-867.
    • (1994) IEEE Trans. Neural Networks , vol.6 , pp. 861-867
    • Hagan, M.T.1    Menhaj, M.B.2
  • 19
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • Hornik, K., Stinchcombe, M. & White, H. 1989 Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366. (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik Kurt1    Stinchcombe Maxwell2    White Halbert3
  • 21
    • 0022113451 scopus 로고
    • Estimation of the generalized extreme-value distribution by the method of probability-weighted moments
    • Hosking, J. R. M., Wallis, J. R. & Wood, E. F. 1985 Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 27, 251-261. (Pubitemid 15549855)
    • (1985) Technometrics , vol.27 , Issue.3 , pp. 251-261
    • Hosking, J.R.M.1    Wallis, J.R.2    Wood, E.F.3
  • 22
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S. K., Das, D. & Srivastava, D. K. 1999 Application of ANN for reservoir inflow prediction and operation. J. Wat. Res. Plann. Mngmnt. 125(5), 263-271.
    • (1999) J. Wat. Res. Plann. Mngmnt. , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, D.2    Srivastava, D.K.3
  • 23
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network based fuzzy inference systems
    • Jang, J. S. R. 1993 ANFIS: adaptive-network based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23(3), 665-685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 24
    • 3242730331 scopus 로고    scopus 로고
    • Regional flood frequency analysis for the Gan-Ming River basin in China
    • DOI 10.1016/j.jhydrol.2004.03.018, PII S0022169404001830
    • Jingyi, Z. & Hall, M. J. 2004 Regional flood frequency analysis for the Gan-Ming River basin in China. J. Hydrol. 296, 98-117. (Pubitemid 38946702)
    • (2004) Journal of Hydrology , vol.296 , Issue.1-4 , pp. 98-117
    • Jingyi, Z.1    Hall, M.J.2
  • 25
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • DOI 10.1061/(ASCE)1084-0699(2004)9:1(60)
    • Kisi, O. 2004a River flow modelling using artificial neural networks. J. Hydrol. Engng. 9(1), 60-63. (Pubitemid 38122771)
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 26
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation
    • DOI 10.1623/hysj.49.6.1025.55720
    • Kisi, O. 2004b Multi-layer perceptrons with Levenberg-Marquardt optimization algorithm for suspended sediment concentration prediction and estimation. Hydrol. Sci. J. 49(6), 1025-1040. (Pubitemid 39622278)
    • (2004) Hydrological Sciences Journal , vol.49 , Issue.6 , pp. 1025-1040
    • Kisi, O.1
  • 27
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • DOI 10.1623/hysj.2005.50.4.683
    • Kisi, O. 2005 Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol. Sci. J. 50(4), 683-696. (Pubitemid 41057429)
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 28
    • 0038009289 scopus 로고    scopus 로고
    • Radial basis function networks applied to DNBR calculation in digital core protection systems
    • Lee, G. C. & Chang, S. H. 2003 Radial basis function networks applied to DNBR calculation in digital core protection systems. Annal. Nucl. Energy 30, 1561-1572.
    • (2003) Annal. Nucl. Energy , vol.30 , pp. 1561-1572
    • Lee, G.C.1    Chang, S.H.2
  • 29
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • Lin, G. F. & Chen, L. H. 2004 A non-linear rainfall-runoff model using radial basis function network. J. Hydrol. 289, 1-8.
    • (2004) J. Hydrol. , vol.289 , pp. 1-8
    • Lin, G.F.1    Chen, L.H.2
  • 30
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippman, R. 1987 An introduction to computing with neural nets. IEEE ASSP Mag. 4, 4-22.
    • (1987) IEEE ASSP Mag. , vol.4 , pp. 4-22
    • Lippman, R.1
  • 31
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
    • Maier, H. R. & Dandy, G. C. 2000 Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Modell. Software 15, 101-124. (Pubitemid 30018318)
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 33
    • 33749873844 scopus 로고    scopus 로고
    • Data-based comparison of seasonality-based regional flood frequency methods
    • DOI 10.1016/j.jhydrol.2006.03.023, PII S0022169406001636, Hydro-Ecological Functioning of the Pang and Lambourn Catchments, UK Results from the Lowland Catchment Research (LOCAR) Initiative
    • Ouarda, T. B. M. J., Cunderlik, J. M., St-Hilaire, A., Barbet, M., Bruneau, P. & Bobée, B. 2006 Data-based comparison of seasonality-based regional flood frequency methods. J. Hydrol. 330, 329-339. (Pubitemid 44559658)
    • (2006) Journal of Hydrology , vol.330 , Issue.1-2 , pp. 329-339
    • Ouarda, T.B.M.J.1    Cunderlik, J.M.2    St-Hilaire, A.3    Barbet, M.4    Bruneau, P.5    Bobee, B.6
  • 34
    • 0035842450 scopus 로고    scopus 로고
    • Regional flood frequency estimation with canonical correlation analysis
    • DOI 10.1016/S0022-1694(01)00488-7, PII S0022169401004887
    • Ouarda, T. B. M. J., Girard, C., Cavadias, G. S. & Bobée, B. 2001 Regional flood frequency estimation with canonical correlation analysis. J. Hydrol. 254, 157-173. (Pubitemid 33136586)
    • (2001) Journal of Hydrology , vol.254 , Issue.1-4 , pp. 157-173
    • Ouarda, T.B.M.J.1    Girard, C.2    Cavadias, G.S.3    Bobee, B.4
  • 35
    • 0034554793 scopus 로고    scopus 로고
    • Regional flood peak and volume estimation in a northern Canadian basin
    • Ouarda, T. B. M. J., Haché, M., Bruneau, P. & Bobée, B. 2000 Regional flood peak and volume estimation in a northern Canadian basin. J. Cold Region Engng. 14, 176-191.
    • (2000) J. Cold Region Engng. , vol.14 , pp. 176-191
    • Ouarda, T.B.M.J.1    Haché, M.2    Bruneau, P.3    Bobée, B.4
  • 36
    • 0033596117 scopus 로고    scopus 로고
    • A comparative study of regression based methods in regional flood frequency analysis
    • Pandey, G. R. & Nguyen, V.-T.-V. 1999 A comparative study of regression based methods in regional flood frequency analysis. J. Hydrol. 225, 92-101.
    • (1999) J. Hydrol. , vol.225 , pp. 92-101
    • Pandey, G.R.1    Nguyen, V.-T.2
  • 38
    • 1842855428 scopus 로고    scopus 로고
    • Homogeneous pooling group delineation for flood frequency analysis using a fuzzy expert system with genetic enhancement
    • DOI 10.1016/j.jhydrol.2003.12.011, PII S0022169403005158
    • Shu, C. & Burn, D. H. 2004a Homogeneous pooling group delineation for flood frequency analysis using a fuzzy expert system with genetic enhancement. J. Hydrol. 291, 132-149. (Pubitemid 38484898)
    • (2004) Journal of Hydrology , vol.291 , Issue.1-2 , pp. 132-149
    • Shu, C.1    Burn, D.H.2
  • 39
    • 6344243351 scopus 로고    scopus 로고
    • Artificial neural network ensembles and their application in pooled flood frequency analysis
    • Shu, C. & Burn, D. H. 2004b Artificial neural network ensembles and their application in pooled flood frequency analysis. Wat. Res. Res. 40(9), W09301.
    • (2004) Wat. Res. Res. , vol.40 , Issue.9
    • Shu, C.1    Burn, D.H.2
  • 40
    • 37548999007 scopus 로고    scopus 로고
    • Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system
    • Shu, C. & Ouarda, T. B. M. J. 2008 Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. J. Hydrol. 349, 31-43.
    • (2008) J. Hydrol. , vol.349 , pp. 31-43
    • Shu, C.1    Ouarda, T.B.M.J.2
  • 43
    • 0022264492 scopus 로고
    • Regional hydrologic analysis 1
    • Stedinger, J. R. & Tasker, G. D. 1985 Regional hydrologic analysis 1. Wat. Res. Res. 21(9), 1421-1432.
    • (1985) Wat. Res. Res. , vol.21 , Issue.9 , pp. 1421-1432
    • Stedinger, J.R.1    Tasker, G.D.2
  • 44
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur, G. 2002 Artificial neural networks for sheet sediment transport. Hydrol. Sci. J. 47(6), 879-892. (Pubitemid 35442407)
    • (2002) Hydrological Sciences Journal , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 45
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using Artificial Neural Networks
    • DOI 10.1061/(ASCE)1084-0699(1999)4:3(232)
    • Tokar, A. S. & Johnson, P. A. 1999 Rainfall-runoff modelling using artificial neural networks. J. Hydrol. Engng. 4(3), 232-239. (Pubitemid 29437829)
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 46
    • 0022886319 scopus 로고
    • Regional flood frequency analysis I: Homogeneity statistics
    • Wiltshire, S. E. 1986 Regional flood frequency analysis I: Homogeneity statistics. Hydrol. Sci. J. 31(3), 321-333.
    • (1986) Hydrol. Sci. J. , vol.31 , Issue.3 , pp. 321-333
    • Wiltshire, S.E.1
  • 47
    • 0028175303 scopus 로고
    • Flood frequency analysis for unguaged sites using a region of influence approach
    • Zrinji, Z. & Burn, D. H. 1994 Flood frequency analysis for unguaged sites using a region of influence approach. J. Hydrol. 153, 1-21.
    • (1994) J. Hydrol. , vol.153 , pp. 1-21
    • Zrinji, Z.1    Burn, D.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.