메뉴 건너뛰기




Volumn 39, Issue 2, 2012, Pages 1924-1936

Mining top-k regular-frequent itemsets using database partitioning and support estimation

Author keywords

Association rule; Data mining; Frequent itemset; Regular frequent itemset; Top k itemset mining

Indexed keywords

BEST FIRST SEARCH; DATABASE PARTITIONING; DATABASE SCANS; EFFICIENT ALGORITHM; ESTIMATION TECHNIQUES; EXPERIMENTAL STUDIES; FREQUENT ITEMSET; INTERESTINGNESS; ITEM SETS; ITEMSET; ITEMSET MINING; REGULAR PERIODS; STATE-OF-THE-ART ALGORITHMS; SUPPORT THRESHOLD; SYNTHETIC AND REAL DATA;

EID: 80054950168     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.08.055     Document Type: Conference Paper
Times cited : (17)

References (26)
  • 6
    • 4544293405 scopus 로고    scopus 로고
    • Mining frequent itemsets without support threshold: With and without item constraints
    • Y.-L. Cheung, and A.W.-C. Fu Mining frequent itemsets without support threshold: With and without item constraints IEEE Transactions on Knowledge and Data Engineering 16 9 2004 1052 1069
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.9 , pp. 1052-1069
    • Cheung, Y.-L.1    Fu, A.W.-C.2
  • 9
    • 24344498330 scopus 로고    scopus 로고
    • Mining data streams: A review
    • DOI 10.1145/1083784.1083789
    • M.M. Gaber, A. Zaslavsky, and S. Krishnaswamy Mining data streams: a review SIGMOD Record 34 2 2005 18 26 (Pubitemid 41260006)
    • (2005) SIGMOD Record , vol.34 , Issue.2 , pp. 18-26
    • Gaber, M.M.1    Zaslavsky, A.2    Krishnaswamy, S.3
  • 11
    • 34547335088 scopus 로고    scopus 로고
    • Frequent pattern mining: Current status and future directions
    • DOI 10.1007/s10618-006-0059-1, 10th Anniversary Issue
    • J. Han, H. Cheng, D. Xin, and X. Yan Frequent pattern mining: current status and future directions Data Mining and Knowledge Discovery 15 1 2007 55 86 (Pubitemid 47142811)
    • (2007) Data Mining and Knowledge Discovery , vol.15 , Issue.1 , pp. 55-86
    • Han, J.1    Cheng, H.2    Xin, D.3    Yan, X.4
  • 13
    • 0002784345 scopus 로고    scopus 로고
    • Algorithms for association rule mining - A general survey and comparison
    • J. Hipp, U. Güntzer, and G. Nakhaeizadeh Algorithms for association rule mining - a general survey and comparison SIGKDD Explorations 2 1 2000 58 64
    • (2000) SIGKDD Explorations , vol.2 , Issue.1 , pp. 58-64
    • Hipp, J.1    Güntzer, U.2    Nakhaeizadeh, G.3
  • 15
    • 77950856550 scopus 로고    scopus 로고
    • Mining interesting rules without support requirement: A general universal existential upward closure property
    • Y. Le Bras, P. Lenca, and S. Lallich Mining interesting rules without support requirement: A general universal existential upward closure property Annals of Information Systems 8 2010 75 98
    • (2010) Annals of Information Systems , vol.8 , pp. 75-98
    • Le Bras, Y.1    Lenca, P.2    Lallich, S.3
  • 16
    • 34548515525 scopus 로고    scopus 로고
    • On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid
    • DOI 10.1016/j.ejor.2006.10.059, PII S0377221706011465
    • P. Lenca, P. Meyer, B. Vaillant, and S. Lallich On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid European Journal of Operational Research 184 2 2008 610 626 (Pubitemid 47374386)
    • (2008) European Journal of Operational Research , vol.184 , Issue.2 , pp. 610-626
    • Lenca, P.1    Meyer, P.2    Vaillant, B.3    Lallich, S.4
  • 17
    • 67349234209 scopus 로고    scopus 로고
    • Interactive mining of top-k frequent closed itemsets from data streams
    • H.-F. Li Interactive mining of top-k frequent closed itemsets from data streams Expert Systems with Applications 36 7 2009 10779 10788
    • (2009) Expert Systems with Applications , vol.36 , Issue.7 , pp. 10779-10788
    • Li, H.-F.1
  • 18
    • 67349195804 scopus 로고    scopus 로고
    • Mining top-k maximal reference sequences from streaming web click-sequences with a damped sliding window
    • H.-F. Li Mining top-k maximal reference sequences from streaming web click-sequences with a damped sliding window Expert Systems with Applications 36 8 2009 11304 11311
    • (2009) Expert Systems with Applications , vol.36 , Issue.8 , pp. 11304-11311
    • Li, H.-F.1
  • 21
    • 38149074872 scopus 로고    scopus 로고
    • Efficient incremental mining of top-k frequent closed itemsets
    • Lecture notes in computer science Springer
    • A. Pietracaprina, and F. Vandin Efficient incremental mining of top-k frequent closed itemsets Discovery science Lecture notes in computer science Vol. 4755 2007 Springer 275 280
    • (2007) Discovery Science , vol.4755 , pp. 275-280
    • Pietracaprina, A.1    Vandin, F.2
  • 23
    • 80054904460 scopus 로고    scopus 로고
    • Mining top-k frequent closed itemsets over data streams using the sliding window model
    • P.S. Tsai Mining top-k frequent closed itemsets over data streams using the sliding window model Expert Systems with Applications 37 10 2010 6968 6973
    • (2010) Expert Systems with Applications , vol.37 , Issue.10 , pp. 6968-6973
    • Tsai, P.S.1
  • 24
    • 19944376126 scopus 로고    scopus 로고
    • TFP: An efficient algorithm for mining top-k frequent closed itemsets
    • DOI 10.1109/TKDE.2005.81
    • Wang, J.; Han, J.; Lu, Y.; & Tzvetkov, P. (2005). Tfp: an efficient algorithm for mining top-k frequent closed itemsets. In: Proceeding of the IEEE Transactions on Knowledge and Data Engineering (Vol. 17, pp. 652-664). Los Alamitos, CA, USA: IEEE Computer Society. (Pubitemid 40750824)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.5 , pp. 652-664
    • Wang, J.1    Han, J.2    Lu, Y.3    Tzvetkov, P.4
  • 26
    • 48649097536 scopus 로고    scopus 로고
    • Topsis: Finding top-k significant n-itemsets in sliding windows adaptively
    • B. Yang, H. Huang, and Z. Wu Topsis: Finding top-k significant n-itemsets in sliding windows adaptively Knowledge-Based Systems 21 6 2008 443 449
    • (2008) Knowledge-Based Systems , vol.21 , Issue.6 , pp. 443-449
    • Yang, B.1    Huang, H.2    Wu, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.