메뉴 건너뛰기




Volumn , Issue , 2011, Pages 167-172

A modified Newton's method for inverse problem of Probabilistic Boolean Networks with gene perturbations

Author keywords

Gene Perturbation; Inversion Problem; Modify Newton's Method; Probabilistic Boolean Networks

Indexed keywords

BOOLEAN NETWORK; GENETIC REGULATORY NETWORKS; INVERSION PROBLEMS; MODIFIED NEWTON'S METHOD; MODIFY NEWTON'S METHOD; NUMERICAL EXPERIMENTS; PROBABILISTIC BOOLEAN NETWORKS; RESEARCH ISSUES; SYSTEMS BIOLOGY;

EID: 80054865998     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISB.2011.6033150     Document Type: Conference Paper
Times cited : (1)

References (19)
  • 1
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • T. Akutsu, S. Miyano, and S. Kuhara, Identification of genetic networks from a small number of gene expression patterns under the Boolean network model, Pac. Symp. Biocomput., 4(1999), 17-28.
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 2
    • 33846424927 scopus 로고    scopus 로고
    • Control of boolean networks: Hardness results and algorithms for tree structured networks
    • T. Akutsu, M. Hayasida, W. Ching, and M. Ng, Control of Boolean Networks: Hardness Results and Algorithms for Tree Structured Networks, Journal of Theoretical Biology, 244(2007), 670-679.
    • (2007) Journal of Theoretical Biology , vol.244 , pp. 670-679
    • Akutsu, T.1    Hayasida, M.2    Ching, W.3    Ng, M.4
  • 4
    • 34748828443 scopus 로고    scopus 로고
    • International Series on Operations Research and Management Science, Springer, New York
    • W. Ching, and M. Ng, Markov Chains: Models, Algorithms and Applications, International Series on Operations Research and Management Science, Springer, New York, 2006.
    • (2006) Markov Chains: Models, Algorithms and Applications
    • Ching, W.1    Ng, M.2
  • 5
    • 33644618250 scopus 로고    scopus 로고
    • On construction of stochastic genetic networks based on gene expression sequences
    • W. Ching, M. Ng, E. Fung, and T. Akutsu, On construction of stochastic genetic networks based on gene expression sequences, Int. J. Neu. Sys., 15(2005), 297-310.
    • (2005) Int. J. Neu. Sys. , vol.15 , pp. 297-310
    • Ching, W.1    Ng, M.2    Fung, E.3    Akutsu, T.4
  • 6
    • 34547840185 scopus 로고    scopus 로고
    • An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks
    • W. Ching, S. Zhang, M. Ng, and T. Akutsu, An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks, Bioinformatics, 12(2007), 1511-1518.
    • (2007) Bioinformatics , vol.12 , pp. 1511-1518
    • Ching, W.1    Zhang, S.2    Ng, M.3    Akutsu, T.4
  • 8
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol., 22(1969), 437-467.
    • (1969) J. Theor. Biol. , vol.22 , pp. 437-467
    • Kauffman, S.1
  • 10
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using dynamic Bayesian networks
    • K. Murphy, S. Mian, Modelling gene expression data using dynamic Bayesian networks, Technical Report, Berkeley, 1999.
    • (1999) Technical Report, Berkeley
    • Murphy, K.1    Mian, S.2
  • 11
    • 27744569877 scopus 로고    scopus 로고
    • Generating Boolean networks with a prescribed attractor structure
    • R. Pal, I. Ivanov, A. Datta, M. Bittner, E. Dougherty, Generating Boolean networks with a prescribed attractor structure, Bioinformatics, 21(2005), 4021-4025.
    • (2005) Bioinformatics , vol.21 , pp. 4021-4025
    • Pal, R.1    Ivanov, I.2    Datta, A.3    Bittner, M.4    Dougherty, E.5
  • 12
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • I. Shmulevich, E. Dougherty, S. Kim and W. Zhang, Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks, Bioinformatics, 18 (2002) 261-274.
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.2    Kim, S.3    Zhang, W.4
  • 13
    • 0036772705 scopus 로고    scopus 로고
    • Gene perturbation and intervention in probabilistic Boolean networks
    • I. Shmulevich, E. R. Dougherty, and W. Zhang, Gene perturbation and intervention in probabilistic Boolean networks, Bioinformatics, 18(2002), 1319-1331.
    • (2002) Bioinformatics , vol.18 , pp. 1319-1331
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 15
    • 0033725197 scopus 로고    scopus 로고
    • Mathematical modeling of gene network
    • P. Smolen, D. Baxter, and J. Byrne, Mathematical modeling of gene network, Neuron. 26(2000), 567-580.
    • (2000) Neuron. , vol.26 , pp. 567-580
    • Smolen, P.1    Baxter, D.2    Byrne, J.3
  • 17
    • 79251593423 scopus 로고    scopus 로고
    • Matrix perturbation method for computing the steady-state probability distributions of probabilistic Boolean networks with gene perturbations
    • W. Xu, W. Ching, S. Zhang, W. Li. Matrix perturbation method for computing the steady-state probability distributions of probabilistic Boolean networks with gene perturbations, Journal of Computational and Applied Mathematics, 235 (2011) 2242-2251.
    • (2011) Journal of Computational and Applied Mathematics , vol.235 , pp. 2242-2251
    • Xu, W.1    Ching, W.2    Zhang, S.3    Li, W.4
  • 19
    • 77950863180 scopus 로고    scopus 로고
    • Generating probabilistic Boolean networks from a prescribed stationary distribution
    • S. Zhang, W. Ching, X. Chen, N. Tsing, Generating probabilistic Boolean networks from a prescribed stationary distribution, Information Sciences, 180 (2010) 2560-2570.
    • (2010) Information Sciences , vol.180 , pp. 2560-2570
    • Zhang, S.1    Ching, W.2    Chen, X.3    Tsing, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.