메뉴 건너뛰기




Volumn 74, Issue 11, 2011, Pages 2487-2497

Thiol redox proteomics identifies differential targets of cytosolic and mitochondrial glutaredoxin-2 isoforms in Saccharomyces cerevisiae. Reversible S-glutathionylation of DHBP synthase (RIB3)

Author keywords

Glutaredoxin; Glutathione; Mitochondria; Redox proteome; Thiol disulfide; Yeast

Indexed keywords

CYSTEINE; FUNGAL PROTEIN; GLUTAMIC ACID; GLUTAREDOXIN; GLUTATHIONE DISULFIDE; PROTEIN RIB3P; PROTEOME; THIOL DERIVATIVE; UNCLASSIFIED DRUG;

EID: 80054856160     PISSN: 18743919     EISSN: 18767737     Source Type: Journal    
DOI: 10.1016/j.jprot.2011.04.018     Document Type: Article
Times cited : (8)

References (44)
  • 2
    • 20044367629 scopus 로고    scopus 로고
    • Redox regulation: a broadening horizon
    • Buchanan B.B., Balmer Y. Redox regulation: a broadening horizon. Annu Rev Plant Biol 2005, 56:187-220.
    • (2005) Annu Rev Plant Biol , vol.56 , pp. 187-220
    • Buchanan, B.B.1    Balmer, Y.2
  • 4
    • 22044445670 scopus 로고    scopus 로고
    • Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation
    • Ghezzi P., Bonetto V., Fratelli M. Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 2005, 7:964-972.
    • (2005) Antioxid Redox Signal , vol.7 , pp. 964-972
    • Ghezzi, P.1    Bonetto, V.2    Fratelli, M.3
  • 5
    • 34248504623 scopus 로고    scopus 로고
    • Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation
    • Reinders J., Sickmann A. Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation. Biomol Eng 2007, 24:169-177.
    • (2007) Biomol Eng , vol.24 , pp. 169-177
    • Reinders, J.1    Sickmann, A.2
  • 6
    • 34147210988 scopus 로고    scopus 로고
    • Hydrogen peroxide sensing and signaling
    • Veal E.A., Day A.M., Morgan B.A. Hydrogen peroxide sensing and signaling. Mol Cell 2007, 26:1-14.
    • (2007) Mol Cell , vol.26 , pp. 1-14
    • Veal, E.A.1    Day, A.M.2    Morgan, B.A.3
  • 7
    • 34548163922 scopus 로고    scopus 로고
    • Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
    • Gallogly M.M., Mieyal J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 2007, 7:381-391.
    • (2007) Curr Opin Pharmacol , vol.7 , pp. 381-391
    • Gallogly, M.M.1    Mieyal, J.J.2
  • 8
    • 77749316875 scopus 로고    scopus 로고
    • Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage
    • Requejo R., Hurd T.R., Costa N.J., Murphy M.P. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J 2010, 277:1465-1480.
    • (2010) FEBS J , vol.277 , pp. 1465-1480
    • Requejo, R.1    Hurd, T.R.2    Costa, N.J.3    Murphy, M.P.4
  • 10
    • 0348230942 scopus 로고    scopus 로고
    • Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system
    • Fernandes A.P., Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 2004, 6:63-74.
    • (2004) Antioxid Redox Signal , vol.6 , pp. 63-74
    • Fernandes, A.P.1    Holmgren, A.2
  • 11
    • 73349133007 scopus 로고    scopus 로고
    • Thioredoxins and glutaredoxins: unifying elements in redox biology
    • Meyer Y., Buchanan B., Vignols F., Reichheld J. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 2009, 43:335-367.
    • (2009) Annu Rev Genet , vol.43 , pp. 335-367
    • Meyer, Y.1    Buchanan, B.2    Vignols, F.3    Reichheld, J.4
  • 12
    • 51349088530 scopus 로고    scopus 로고
    • Molecular mechanisms and clinical implications of reversible protein S-glutathionylation
    • Mieyal J.J., Gallogly M.M., Qanungo S., Sabens E.A., Shelton M.D. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 2008, 10:1941-1988.
    • (2008) Antioxid Redox Signal , vol.10 , pp. 1941-1988
    • Mieyal, J.J.1    Gallogly, M.M.2    Qanungo, S.3    Sabens, E.A.4    Shelton, M.D.5
  • 13
    • 2042476756 scopus 로고
    • Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione
    • Holmgren A. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A 1976, 73:2275-2279.
    • (1976) Proc Natl Acad Sci U S A , vol.73 , pp. 2275-2279
    • Holmgren, A.1
  • 17
    • 34250731291 scopus 로고    scopus 로고
    • Monothiol glutaredoxins: a common domain for multiple functions
    • Herrero E., de la Torre-Ruiz M.A. Monothiol glutaredoxins: a common domain for multiple functions. Cell Mol Life Sci 2007, 64:1518-1530.
    • (2007) Cell Mol Life Sci , vol.64 , pp. 1518-1530
    • Herrero, E.1    de la Torre-Ruiz, M.A.2
  • 18
    • 34047250626 scopus 로고    scopus 로고
    • Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria
    • Johansson C., Kavanagh K.L., Gileadi O., Oppermann U. Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria. J Biol Chem 2007, 282:3077-3082.
    • (2007) J Biol Chem , vol.282 , pp. 3077-3082
    • Johansson, C.1    Kavanagh, K.L.2    Gileadi, O.3    Oppermann, U.4
  • 19
    • 0031719952 scopus 로고    scopus 로고
    • The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species
    • Luikenhuis S., Perrone G., Dawes I.W., Grant C.M. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 1998, 9:1081-1091.
    • (1998) Mol Biol Cell , vol.9 , pp. 1081-1091
    • Luikenhuis, S.1    Perrone, G.2    Dawes, I.W.3    Grant, C.M.4
  • 20
    • 48949106599 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway
    • Izquierdo A., Casas C., Mühlenhoff U., Lillig C.H., Herrero E. Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway. Eukaryot Cell 2008, 7:1415-1426.
    • (2008) Eukaryot Cell , vol.7 , pp. 1415-1426
    • Izquierdo, A.1    Casas, C.2    Mühlenhoff, U.3    Lillig, C.H.4    Herrero, E.5
  • 21
    • 38849206923 scopus 로고    scopus 로고
    • Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins
    • Mesecke N., Mittler S., Eckers E., Herrmann J.M., Deponte M. Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins. Biochemistry 2008, 47:1452-1463.
    • (2008) Biochemistry , vol.47 , pp. 1452-1463
    • Mesecke, N.1    Mittler, S.2    Eckers, E.3    Herrmann, J.M.4    Deponte, M.5
  • 22
    • 0037096975 scopus 로고    scopus 로고
    • Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments
    • Pedrajas J., Porras P., Martinez-Galisteo E., Padilla C., Miranda-Vizuete A., Barcena J. Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments. Biochem J 2002, 364:617-623.
    • (2002) Biochem J , vol.364 , pp. 617-623
    • Pedrajas, J.1    Porras, P.2    Martinez-Galisteo, E.3    Padilla, C.4    Miranda-Vizuete, A.5    Barcena, J.6
  • 23
    • 33745210793 scopus 로고    scopus 로고
    • One single in-frame AUG codon is responsible for a diversity of subcellular localizations of glutaredoxin 2 in Saccharomyces cerevisiae
    • Porras P., Padilla C.A., Krayl M., Voos W., Barcena J.A. One single in-frame AUG codon is responsible for a diversity of subcellular localizations of glutaredoxin 2 in Saccharomyces cerevisiae. J Biol Chem 2006, 281:16551-16562.
    • (2006) J Biol Chem , vol.281 , pp. 16551-16562
    • Porras, P.1    Padilla, C.A.2    Krayl, M.3    Voos, W.4    Barcena, J.A.5
  • 24
    • 58149123295 scopus 로고    scopus 로고
    • Structural aspects of the distinct biochemical properties of glutaredoxin 1 and glutaredoxin 2 from Saccharomyces cerevisiae
    • Discola K.F., de Oliveira M.A., Rosa Cussiol J.R., Monteiro G., Barcena J.A., Porras P., et al. Structural aspects of the distinct biochemical properties of glutaredoxin 1 and glutaredoxin 2 from Saccharomyces cerevisiae. J Mol Biol 2009, 385:889-901.
    • (2009) J Mol Biol , vol.385 , pp. 889-901
    • Discola, K.F.1    de Oliveira, M.A.2    Rosa Cussiol, J.R.3    Monteiro, G.4    Barcena, J.A.5    Porras, P.6
  • 25
    • 76849107684 scopus 로고    scopus 로고
    • Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution
    • Porras P., McDonagh B., Pedrajas J.R., Barcena J.A., Padilla C.A. Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution. Biochim Biophys Acta 2010, 1804:839-845.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 839-845
    • Porras, P.1    McDonagh, B.2    Pedrajas, J.R.3    Barcena, J.A.4    Padilla, C.A.5
  • 26
    • 38549128118 scopus 로고    scopus 로고
    • Apoptosis as a mechanism for removal of mutated cells of Saccharomyces cerevisiae: the role of Grx2 under cadmium exposure
    • Gomes D.S., Pereira M.D., Panek A.D., Andrade L.R., Eleutherio E.C.A. Apoptosis as a mechanism for removal of mutated cells of Saccharomyces cerevisiae: the role of Grx2 under cadmium exposure. Biochim Biophys Acta 2008, 1780:160-166.
    • (2008) Biochim Biophys Acta , vol.1780 , pp. 160-166
    • Gomes, D.S.1    Pereira, M.D.2    Panek, A.D.3    Andrade, L.R.4    Eleutherio, E.C.A.5
  • 27
    • 0034841844 scopus 로고    scopus 로고
    • The tandem affinity purification (TAP) method: a general procedure of protein complex purification
    • Puig O., Caspary F., Rigaut G., Rutz B., Bouveret E., Bragado-Nilsson E., et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 2001, 24:218-229.
    • (2001) Methods , vol.24 , pp. 218-229
    • Puig, O.1    Caspary, F.2    Rigaut, G.3    Rutz, B.4    Bouveret, E.5    Bragado-Nilsson, E.6
  • 28
    • 63349083179 scopus 로고    scopus 로고
    • Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria
    • Lindahl M., Kieselbach T. Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria. J Proteomics 2009.
    • (2009) J Proteomics
    • Lindahl, M.1    Kieselbach, T.2
  • 29
    • 63649159793 scopus 로고    scopus 로고
    • Shotgun redox proteomics identifies specifically modified cysteines in key metabolic enzymes under oxidative stress in Saccharomyces cerevisiae
    • Mcdonagh B., Ogueta S., Lasarte G., Padilla C.A., Bárcena J.A. Shotgun redox proteomics identifies specifically modified cysteines in key metabolic enzymes under oxidative stress in Saccharomyces cerevisiae. J Proteomics 2009, 72:677-689.
    • (2009) J Proteomics , vol.72 , pp. 677-689
    • Mcdonagh, B.1    Ogueta, S.2    Lasarte, G.3    Padilla, C.A.4    Bárcena, J.A.5
  • 30
    • 0040932016 scopus 로고    scopus 로고
    • Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae
    • Rodriguez-Manzaneque M.T., Ros J., Cabiscol E., Sorribas A., Herrero E. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 1999, 19:8180-8190.
    • (1999) Mol Cell Biol , vol.19 , pp. 8180-8190
    • Rodriguez-Manzaneque, M.T.1    Ros, J.2    Cabiscol, E.3    Sorribas, A.4    Herrero, E.5
  • 31
    • 33847630405 scopus 로고    scopus 로고
    • Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry
    • Elias J.E., Gygi S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 2007, 4:207-214.
    • (2007) Nat Methods , vol.4 , pp. 207-214
    • Elias, J.E.1    Gygi, S.P.2
  • 32
    • 0036209134 scopus 로고    scopus 로고
    • Qscore: an algorithm for evaluating SEQUEST database search results
    • Moore R.E., Young M.K., Lee T.D. Qscore: an algorithm for evaluating SEQUEST database search results. J Am Soc Mass Spectrom 2002, 13:378-386.
    • (2002) J Am Soc Mass Spectrom , vol.13 , pp. 378-386
    • Moore, R.E.1    Young, M.K.2    Lee, T.D.3
  • 33
    • 0035131144 scopus 로고    scopus 로고
    • Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions
    • Grant C.M. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 2001, 39:533-541.
    • (2001) Mol Microbiol , vol.39 , pp. 533-541
    • Grant, C.M.1
  • 34
    • 0038690465 scopus 로고    scopus 로고
    • Yeast dihydroxybutanone phosphate synthase, an enzyme of the riboflavin biosynthetic pathway, has a second unrelated function in expression of mitochondrial respiration
    • Jin C., Barrientos A., Tzagoloff A. Yeast dihydroxybutanone phosphate synthase, an enzyme of the riboflavin biosynthetic pathway, has a second unrelated function in expression of mitochondrial respiration. J Biol Chem 2003, 278:14698-14703.
    • (2003) J Biol Chem , vol.278 , pp. 14698-14703
    • Jin, C.1    Barrientos, A.2    Tzagoloff, A.3
  • 35
    • 65549130046 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae protein Ccz1p interacts with components of the endosomal fusion machinery
    • Kucharczyk R., Hoffman-Sommer M., Piekarska I., von Mollard G.F., Rytka J. The Saccharomyces cerevisiae protein Ccz1p interacts with components of the endosomal fusion machinery. FEMS Yeast Res 2009, 9:565-573.
    • (2009) FEMS Yeast Res , vol.9 , pp. 565-573
    • Kucharczyk, R.1    Hoffman-Sommer, M.2    Piekarska, I.3    von Mollard, G.F.4    Rytka, J.5
  • 37
    • 33646873985 scopus 로고    scopus 로고
    • Role of Doa1 in the Saccharomyces cerevisiae DNA damage response
    • Lis E.T., Romesberg F.E. Role of Doa1 in the Saccharomyces cerevisiae DNA damage response. Mol Cell Biol 2006, 26:4122-4133.
    • (2006) Mol Cell Biol , vol.26 , pp. 4122-4133
    • Lis, E.T.1    Romesberg, F.E.2
  • 38
    • 33744543755 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways
    • Le Moan N., Clement G., Le Maout S., Tacnet F., Toledano M.B. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways. J Biol Chem 2006, 281:10420-10430.
    • (2006) J Biol Chem , vol.281 , pp. 10420-10430
    • Le Moan, N.1    Clement, G.2    Le Maout, S.3    Tacnet, F.4    Toledano, M.B.5
  • 39
    • 77956146939 scopus 로고    scopus 로고
    • Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae
    • Marino S.M., Li Y., Fomenko D.E., Agisheva N., Cerny R.L., Gladyshev V.N. Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae. Biochemistry 2010, 49:7709-7721.
    • (2010) Biochemistry , vol.49 , pp. 7709-7721
    • Marino, S.M.1    Li, Y.2    Fomenko, D.E.3    Agisheva, N.4    Cerny, R.L.5    Gladyshev, V.N.6
  • 40
    • 70350235044 scopus 로고    scopus 로고
    • A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions
    • Helbig A.O., de Groot M.J.L., van Gestel R.A., Mohammed S., de Hulster E.A.F., Luttik M.A.H., et al. A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions. Proteomics 2009, 9:4787-4798.
    • (2009) Proteomics , vol.9 , pp. 4787-4798
    • Helbig, A.O.1    de Groot, M.J.L.2    van Gestel, R.A.3    Mohammed, S.4    de Hulster, E.A.F.5    Luttik, M.A.H.6
  • 41
    • 9144249116 scopus 로고    scopus 로고
    • Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE
    • Beer S.M., Taylor E.R., Brown S.E., Dahm C.C., Costa N.J., Runswick M.J., et al. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J Biol Chem 2004, 279:47939-47951.
    • (2004) J Biol Chem , vol.279 , pp. 47939-47951
    • Beer, S.M.1    Taylor, E.R.2    Brown, S.E.3    Dahm, C.C.4    Costa, N.J.5    Runswick, M.J.6
  • 42
    • 0037065733 scopus 로고    scopus 로고
    • Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase
    • Liao D.-I., Zheng Y.-J., Viitanen P.V., Jordan D.B. Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase. Biochemistry 2002, 41:1795-1806.
    • (2002) Biochemistry , vol.41 , pp. 1795-1806
    • Liao, D.-I.1    Zheng, Y.-J.2    Viitanen, P.V.3    Jordan, D.B.4
  • 43
    • 0018787051 scopus 로고
    • Chemical modification of the active site sulfhydryl group of saccharopine dehydrogenase (L-lysine-forming)
    • Ogawa H., Okamoto M., Fujioka M. Chemical modification of the active site sulfhydryl group of saccharopine dehydrogenase (L-lysine-forming). J Biol Chem 1979, 254:7030-7035.
    • (1979) J Biol Chem , vol.254 , pp. 7030-7035
    • Ogawa, H.1    Okamoto, M.2    Fujioka, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.