-
1
-
-
0036568025
-
Finite-time analysis of the multiarmed bandit problem
-
DOI 10.1023/A:1013689704352, Computational Learning Theory
-
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time analysis of the multiarmed bandit problem. Machine learning 47(2):235-256. (Pubitemid 34126111)
-
(2002)
Machine Learning
, vol.47
, Issue.2-3
, pp. 235-256
-
-
Auer, P.1
Cesa-Bianchi, N.2
Fischer, P.3
-
2
-
-
71549133876
-
UCT for tactical assault planning in real-time strategy games
-
Balla, R., and Fern, A. 2009. UCT for tactical assault planning in real-time strategy games. In IJCAI, 40-45.
-
(2009)
IJCAI
, pp. 40-45
-
-
Balla, R.1
Fern, A.2
-
3
-
-
77958561606
-
Lower bounding Klondike solitaire with Monte-Carlo planning
-
Bjarnason, R.; Fern, A.; and Tadepalli, P. 2009. Lower bounding Klondike solitaire with Monte-Carlo planning. In ICAPS, 26-33.
-
(2009)
ICAPS
, pp. 26-33
-
-
Bjarnason, R.1
Fern, A.2
Tadepalli, P.3
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman, L. 1996. Bagging predictors. Machine learning 24(2):123-140. (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0035478854
-
Random forests
-
DOI 10.1023/A:1010933404324
-
Breiman, L. 2001. Random forests. Machine learning 45:5-32. (Pubitemid 32933532)
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T. 2000. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine learning 40(2):139-157.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.1
-
9
-
-
57749181518
-
Simulation-based approach to general game playing
-
Finnsson, H., and Bjornsson, Y. 2008. Simulation-based approach to general game playing. In AAAI, 259-264.
-
(2008)
AAAI
, pp. 259-264
-
-
Finnsson, H.1
Bjornsson, Y.2
-
10
-
-
77958578450
-
Combining online and offline knowledge in UCT
-
Gelly, S., and Silver, D. 2007. Combining online and offline knowledge in UCT. In ICML.
-
(2007)
ICML
-
-
Gelly, S.1
Silver, D.2
-
11
-
-
70350239822
-
On the parallelization of Monte-Carlo planning
-
Gelly, S.; Hoock, J.; Rimmel, A.; Teytaud, O.; and Kalemkarian, Y. 2008. On the parallelization of Monte-Carlo planning. In ICINCO.
-
(2008)
ICINCO
-
-
Gelly, S.1
Hoock, J.2
Rimmel, A.3
Teytaud, O.4
Kalemkarian, Y.5
-
12
-
-
34548762941
-
-
Loyola College in Maryland, Tech. Rep. CS-TR-0002
-
Glenn, J. 2006. An optimal strategy for Yahtzee. Loyola College in Maryland, Tech. Rep. CS-TR-0002.
-
(2006)
An Optimal Strategy for Yahtzee
-
-
Glenn, J.1
-
13
-
-
0036832951
-
A sparse sampling algorithm for near-optimal planning in large Markov decision processes
-
DOI 10.1023/A:1017932429737
-
Kearns, M.; Mansour, Y.; and Ng, A. 2002. A sparse sampling algorithm for near-optimal planning in large Markov Decision Processes. Machine Learning 49:193-208. (Pubitemid 34325686)
-
(2002)
Machine Learning
, vol.49
, Issue.2-3
, pp. 193-208
-
-
Kearns, M.1
Mansour, Y.2
Ng, A.Y.3
-
14
-
-
33750293964
-
Bandit based Monte-Carlo planning
-
Kocsis, L., and Szepesvari, C. 2006. Bandit based Monte-Carlo planning. In ECML, 282-293.
-
(2006)
ECML
, pp. 282-293
-
-
Kocsis, L.1
Szepesvari, C.2
-
15
-
-
78651517373
-
Planning with Noisy Probabilistic Relational Rules
-
Lang, T., and Toussaint, M. 2010. Planning with Noisy Probabilistic Relational Rules. JAIR 39:1-49.
-
(2010)
JAIR
, vol.39
, pp. 1-49
-
-
Lang, T.1
Toussaint, M.2
-
16
-
-
0000985504
-
TD-Gammon, a self-teaching backgammon program, achieves master-level play
-
Tesauro, G. 1994. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural computation 6(2):215-219.
-
(1994)
Neural Computation
, vol.6
, Issue.2
, pp. 215-219
-
-
Tesauro, G.1
|