메뉴 건너뛰기




Volumn , Issue , 2011, Pages 58-65

Ensemble Monte-Carlo planning: An empirical study

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION DOMAINS; EMPIRICAL STUDIES; MONTE CARLO; PER UNIT; PLANNING ALGORITHMS; SEARCH TREES; SINGLE SEARCH; SPACE AND TIME; TIME MODEL;

EID: 80054833328     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (17)

References (17)
  • 1
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • DOI 10.1023/A:1013689704352, Computational Learning Theory
    • Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time analysis of the multiarmed bandit problem. Machine learning 47(2):235-256. (Pubitemid 34126111)
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 2
    • 71549133876 scopus 로고    scopus 로고
    • UCT for tactical assault planning in real-time strategy games
    • Balla, R., and Fern, A. 2009. UCT for tactical assault planning in real-time strategy games. In IJCAI, 40-45.
    • (2009) IJCAI , pp. 40-45
    • Balla, R.1    Fern, A.2
  • 3
    • 77958561606 scopus 로고    scopus 로고
    • Lower bounding Klondike solitaire with Monte-Carlo planning
    • Bjarnason, R.; Fern, A.; and Tadepalli, P. 2009. Lower bounding Klondike solitaire with Monte-Carlo planning. In ICAPS, 26-33.
    • (2009) ICAPS , pp. 26-33
    • Bjarnason, R.1    Fern, A.2    Tadepalli, P.3
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Machine learning 24(2):123-140. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman, L. 2001. Random forests. Machine learning 45:5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. 2000. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine learning 40(2):139-157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.1
  • 9
    • 57749181518 scopus 로고    scopus 로고
    • Simulation-based approach to general game playing
    • Finnsson, H., and Bjornsson, Y. 2008. Simulation-based approach to general game playing. In AAAI, 259-264.
    • (2008) AAAI , pp. 259-264
    • Finnsson, H.1    Bjornsson, Y.2
  • 10
    • 77958578450 scopus 로고    scopus 로고
    • Combining online and offline knowledge in UCT
    • Gelly, S., and Silver, D. 2007. Combining online and offline knowledge in UCT. In ICML.
    • (2007) ICML
    • Gelly, S.1    Silver, D.2
  • 12
    • 34548762941 scopus 로고    scopus 로고
    • Loyola College in Maryland, Tech. Rep. CS-TR-0002
    • Glenn, J. 2006. An optimal strategy for Yahtzee. Loyola College in Maryland, Tech. Rep. CS-TR-0002.
    • (2006) An Optimal Strategy for Yahtzee
    • Glenn, J.1
  • 13
    • 0036832951 scopus 로고    scopus 로고
    • A sparse sampling algorithm for near-optimal planning in large Markov decision processes
    • DOI 10.1023/A:1017932429737
    • Kearns, M.; Mansour, Y.; and Ng, A. 2002. A sparse sampling algorithm for near-optimal planning in large Markov Decision Processes. Machine Learning 49:193-208. (Pubitemid 34325686)
    • (2002) Machine Learning , vol.49 , Issue.2-3 , pp. 193-208
    • Kearns, M.1    Mansour, Y.2    Ng, A.Y.3
  • 14
    • 33750293964 scopus 로고    scopus 로고
    • Bandit based Monte-Carlo planning
    • Kocsis, L., and Szepesvari, C. 2006. Bandit based Monte-Carlo planning. In ECML, 282-293.
    • (2006) ECML , pp. 282-293
    • Kocsis, L.1    Szepesvari, C.2
  • 15
    • 78651517373 scopus 로고    scopus 로고
    • Planning with Noisy Probabilistic Relational Rules
    • Lang, T., and Toussaint, M. 2010. Planning with Noisy Probabilistic Relational Rules. JAIR 39:1-49.
    • (2010) JAIR , vol.39 , pp. 1-49
    • Lang, T.1    Toussaint, M.2
  • 16
    • 0000985504 scopus 로고
    • TD-Gammon, a self-teaching backgammon program, achieves master-level play
    • Tesauro, G. 1994. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural computation 6(2):215-219.
    • (1994) Neural Computation , vol.6 , Issue.2 , pp. 215-219
    • Tesauro, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.