메뉴 건너뛰기




Volumn 107, Issue 5, 2011, Pages 413-420

Investigating population stratification and admixture using eigenanalysis of dense genotypes

Author keywords

admixture; population stratification; principal components; stopping rule; vicariance

Indexed keywords

CLUSTER ANALYSIS; COALESCENCE; COMPUTER; COVARIANCE ANALYSIS; EIGENVALUE; ERROR ANALYSIS; GENOME; GENOTYPE; HYPOTHESIS TESTING; PRINCIPAL COMPONENT ANALYSIS; VICARIANCE;

EID: 80054804726     PISSN: 0018067X     EISSN: 13652540     Source Type: Journal    
DOI: 10.1038/hdy.2011.26     Document Type: Article
Times cited : (26)

References (19)
  • 1
    • 68249107559 scopus 로고    scopus 로고
    • A genome-wide association study of hypertension and blood pressure in African Americans
    • Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H et al. (2009). A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet 5: e1000564.
    • (2009) PLoS Genet , vol.5
    • Adeyemo, A.1    Gerry, N.2    Chen, G.3    Herbert, A.4    Doumatey, A.5    Huang, H.6
  • 2
    • 77954148131 scopus 로고    scopus 로고
    • Development of admixture mapping panels for African Americans from commercial high-density SNP arrays
    • Chen G, Shriner D, Zhou J, Doumatey A, Huang H, Gerry NP et al. (2010). Development of admixture mapping panels for African Americans from commercial high-density SNP arrays. BMC Genomics 11: 417.
    • (2010) BMC Genomics , vol.11 , pp. 417
    • Chen, G.1    Shriner, D.2    Zhou, J.3    Doumatey, A.4    Huang, H.5    Gerry, N.P.6
  • 3
    • 77956331627 scopus 로고    scopus 로고
    • Integrating common and rare genetic variation in diverse human populations
    • The International HapMap 3 Consortium
    • The International HapMap 3 Consortium. (2010). Integrating common and rare genetic variation in diverse human populations. Nature 467: 52-58.
    • (2010) Nature , vol.467 , pp. 52-58
  • 4
    • 78049415423 scopus 로고    scopus 로고
    • Analysis of population structure: A unifying framework and novel methods based on sparse factor analysis
    • Engelhardt BE, Stephens M (2010). Analysis of population structure: a unifying framework and novel methods based on sparse factor analysis. PLoS Genet 6: e1001117.
    • (2010) PLoS Genet , vol.6
    • Engelhardt, B.E.1    Stephens, M.2
  • 5
    • 0041817568 scopus 로고    scopus 로고
    • Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies
    • Falush D, Stephens M, Pritchard JK (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567-1587. (Pubitemid 37102217)
    • (2003) Genetics , vol.164 , Issue.4 , pp. 1567-1587
    • Falush, D.1    Stephens, M.2    Pritchard, J.K.3
  • 6
    • 66749139020 scopus 로고    scopus 로고
    • Using allele sharing distance for detecting human population stratification
    • Gao X, Martin ER (2009). Using allele sharing distance for detecting human population stratification. Hum Hered 68: 182-191.
    • (2009) Hum Hered , vol.68 , pp. 182-191
    • Gao, X.1    Martin, E.R.2
  • 7
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • Johnstone I (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann Stat 29: 295-327.
    • (2001) Ann Stat , vol.29 , pp. 295-327
    • Johnstone, I.1
  • 8
    • 34748868431 scopus 로고    scopus 로고
    • Detecting population structure using STRUCTURE software: Effect of background linkage disequilibrium
    • DOI 10.1038/sj.hdy.6801010, PII 6801010
    • Kaeuffer R, Réale D, Coltman DW, Pontier D (2007). Detecting population structure using STRUCTURE software: effect of background linkage disequilibrium. Heredity 99: 374-380. (Pubitemid 47482635)
    • (2007) Heredity , vol.99 , Issue.4 , pp. 374-380
    • Kaeuffer, R.1    Reale, D.2    Coltman, D.W.3    Pontier, D.4
  • 10
    • 73349108482 scopus 로고    scopus 로고
    • A genealogical interpretation of principal components analysis
    • McVean G (2009). A genealogical interpretation of principal components analysis. PLoS Genet 5: e1000686.
    • (2009) PLoS Genet , vol.5
    • McVean, G.1
  • 12
    • 0034242321 scopus 로고    scopus 로고
    • SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test
    • O'Connor BP (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test. Behav Res Methods Instrum Comput 32: 396-402.
    • (2000) Behav Res Methods Instrum Comput , vol.32 , pp. 396-402
    • Oconnor, B.P.1
  • 14
    • 19044395321 scopus 로고    scopus 로고
    • How many principal components? stopping rules for determining the number of non-trivial axes revisited
    • DOI 10.1016/j.csda.2004.06.015, PII S0167947304002014
    • Peres-Neto PR, Jackson DA, Somers KM (2005). How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput Stat Data Anal 49: 974-997. (Pubitemid 40710156)
    • (2005) Computational Statistics and Data Analysis , vol.49 , Issue.4 , pp. 974-997
    • Peres-Neto, P.R.1    Jackson, D.A.2    Somers, K.M.3
  • 15
    • 33746512512 scopus 로고    scopus 로고
    • Principal components analysis corrects for stratification in genome-wide association studies
    • DOI 10.1038/ng1847, PII NG1847
    • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904-909. (Pubitemid 44141658)
    • (2006) Nature Genetics , vol.38 , Issue.8 , pp. 904-909
    • Price, A.L.1    Patterson, N.J.2    Plenge, R.M.3    Weinblatt, M.E.4    Shadick, N.A.5    Reich, D.6
  • 18
    • 70149113077 scopus 로고    scopus 로고
    • R Development Core Team The R Foundation for Statistical Computing: Vienna, Austria
    • R Development Core Team (2009). R: A language and environment for statistical computing. The R Foundation for Statistical Computing: Vienna, Austria.
    • (2009) R: A Language and Environment for Statistical Computing
  • 19
    • 0001193215 scopus 로고
    • Determining the number of components from the matrix of partial correlations
    • Velicer WF (1976). Determining the number of components from the matrix of partial correlations. Psychometrika 41: 321-327.
    • (1976) Psychometrika , vol.41 , pp. 321-327
    • Velicer, W.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.