-
1
-
-
0015125457
-
A direct method of nonparametric measurement selection
-
A. Whitney, "A direct method of nonparametric measurement selection," IEEE Transactions on Computers, vol. 100, no. 9, pp. 1100-1103, 1971.
-
(1971)
IEEE Transactions on Computers
, vol.100
, Issue.9
, pp. 1100-1103
-
-
Whitney, A.1
-
2
-
-
84914813506
-
On the effectiveness of receptors in recognition systems
-
T. Marill and D. Green, "On the effectiveness of receptors in recognition systems," IEEE Transactions on Information Theory, vol. 9, no. 1, pp. 11-17, 1963.
-
(1963)
IEEE Transactions on Information Theory
, vol.9
, Issue.1
, pp. 11-17
-
-
Marill, T.1
Green, D.2
-
3
-
-
0028547556
-
Floating search methods in feature selection
-
November
-
P. Pudil, J. Novovičová, and J. Kittler, "Floating search methods in feature selection," Pattern Recognition Letter, vol. 15, pp. 1119-1125, November 1994.
-
(1994)
Pattern Recognition Letter
, vol.15
, pp. 1119-1125
-
-
Pudil, P.1
Novovičová, J.2
Kittler, J.3
-
4
-
-
67349133167
-
An improvement on floating search algorithms for feature subset selection
-
S. Nakariyakul and D. Casasent, "An improvement on floating search algorithms for feature subset selection," Pattern Recognition, vol. 42, no. 9, pp. 1932-1940, 2009.
-
(2009)
Pattern Recognition
, vol.42
, Issue.9
, pp. 1932-1940
-
-
Nakariyakul, S.1
Casasent, D.2
-
5
-
-
0003408420
-
-
The MIT Press
-
B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, The MIT Press, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
6
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan, "Multiple kernel learning, conic duality, and the SMO algorithm," In Proceeding of International Conference on Machine Learning, 2004.
-
(2004)
Proceeding of International Conference on Machine Learning
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
7
-
-
77956332691
-
Nonsparse multiple kernel learning
-
M. Kloft, U. Brefeld, P. Laskov, and S. Sonnenburg, "Nonsparse multiple kernel learning," in In Proceeding of NIPS Workshop on Kernel Learning: Automatic Selection of Optimal Kernels, 2008.
-
(2008)
Proceeding of NIPS Workshop on Kernel Learning: Automatic Selection of Optimal Kernels
-
-
Kloft, M.1
Brefeld, U.2
Laskov, P.3
Sonnenburg, S.4
-
8
-
-
33846580425
-
Local features and kernels for classification of texture and object categories: A comprehensive study
-
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, "Local features and kernels for classification of texture and object categories: A comprehensive study," International Journal of Computer Vision, vol. 73, no. 2, pp. 213-238, 2007.
-
(2007)
International Journal of Computer Vision
, vol.73
, Issue.2
, pp. 213-238
-
-
Zhang, J.1
Marszalek, M.2
Lazebnik, S.3
Schmid, C.4
-
11
-
-
71149100436
-
Non-monotonic feature selection
-
Z. Xu, R. Jin, J. Ye, M. R. Lyu, and I. King, "Non-monotonic feature selection," In Proceeding of International Conference on Machine Learning, 2009.
-
(2009)
Proceeding of International Conference on Machine Learning
-
-
Xu, Z.1
Jin, R.2
Ye, J.3
Lyu, M.R.4
King, I.5
-
12
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society: Series B, vol. 67, no. 2, pp. 301-320, 2005.
-
(2005)
Journal of the Royal Statistical Society: Series B
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
13
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
14
-
-
57249084590
-
SimpleMKL
-
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, "SimpleMKL," Journal of Machine Learning Research, vol. 9, pp. 2491-2521, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
15
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, "Large scale multiple kernel learning," Journal of Machine Learning Research, vol. 7, pp. 1531-1565, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Rätsch, G.2
Schäfer, C.3
Schölkopf, B.4
-
16
-
-
10044235999
-
LIBSVM: A library for support vector machines
-
C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
-
(2001)
Software
-
-
Chang, C.-C.1
Lin, C.-J.2
|