-
3
-
-
0032319636
-
Approximating a finite metric by a small number of tree metrics
-
IEEE Computer Science,Washington, DC
-
Charikar, M. et al. (1998). Approximating a finite metric by a small number of tree metrics. In Proc. 39th Ann. Symp. on Foundations of Computer Science, IEEE Computer Science,Washington, DC, pp. 379-388.
-
(1998)
Proc. 39th Ann. Symp. on Foundations of Computer Science
, pp. 379-388
-
-
Charikar, M.1
-
4
-
-
41049109516
-
Enhanced negative type for finite metric trees
-
(Correction: 255 2008), (532-533.)
-
Doust, I. andWeston,A. (2008). Enhanced negative type for finite metric trees. J. Funct. Anal. 254, 2336-2364. (Correction: 255 (2008), 532-533.)
-
(2008)
J. Funct. Anal.
, vol.254
, pp. 2336-2364
-
-
Doust, I.1
Weston, A.2
-
5
-
-
0000243353
-
Sur le barycentre d'une probabilité dans une variété
-
Séminaire de Probabilités XXV, Springer, Berlin
-
Émery, D. and Mokobodzki, G. (1991). Sur le barycentre d'une probabilité dans une variété In Séminaire de Probabilités XXV (Lecture Notes Math. 1485), Springer, Berlin, pp. 220-233.
-
(1991)
Lecture Notes Math.
, vol.1485
, pp. 220-233
-
-
Émery, D.1
Mokobodzki, G.2
-
6
-
-
0005339008
-
Barycentre canonique pour un espace métrique à courbure négative
-
Séminaire de Probabilités XXXIII, Springer, Berlin
-
Es-Sahib, A. and Heinich, H. (1999). Barycentre canonique pour un espace métrique à courbure négative. In Séminaire de Probabilités XXXIII (Lecture Notes Math. 1709), Springer, Berlin, pp. 355-370.
-
(1999)
Lecture Notes Math.
, vol.1709
, pp. 355-370
-
-
Es-Sahib, A.1
Heinich, H.2
-
7
-
-
84960586494
-
Probability, convexity, and harmonic maps with small images. I. Uniqueness and fine existence
-
Kendall, W. S. (1990). Probability, convexity, and harmonic maps with small images. I. Uniqueness and fine existence. Proc. London Math. Soc. 61, 371-406.
-
(1990)
Proc. London Math. Soc.
, vol.61
, pp. 371-406
-
-
Kendall, W.S.1
-
8
-
-
67949112823
-
A stochastic model for phylogenetic trees
-
Liggett, T. M. and Schinazi, R. B. (2009). A stochastic model for phylogenetic trees. J. Appl. Prob. 46, 601-607.
-
(2009)
J. Appl. Prob.
, vol.46
, pp. 601-607
-
-
Liggett, T.M.1
Schinazi, R.B.2
-
9
-
-
68049099068
-
Coalescent methods for estimating phylogenetic trees
-
Liu, L. et al. (2009). Coalescent methods for estimating phylogenetic trees. Molec. Phylogenet. Evol. 53, 320-328.
-
(2009)
Molec. Phylogenet. Evol.
, vol.53
, pp. 320-328
-
-
Liu, L.1
-
11
-
-
0000717885
-
Barycentres et martingales sur une variété
-
Picard, J. (1994). Barycentres et martingales sur une variété Ann. Inst. H. Poincaré Prob. Statist. 30, 647-702.
-
(1994)
Ann. Inst. H. Poincaré Prob. Statist.
, vol.30
, pp. 647-702
-
-
Picard, J.1
-
12
-
-
0028795234
-
Four-cluster analysis: A simple method to test phylogenetic hypotheses
-
Rzhetsky, A., Kumar, S. and Nei, M. (1995). Four-cluster analysis: a simple method to test phylogenetic hypotheses. Molec. Biol. Evol. 12, 163-167.
-
(1995)
Molec. Biol. Evol.
, vol.12
, pp. 163-167
-
-
Rzhetsky, A.1
Kumar, S.2
Nei, M.3
-
14
-
-
0942278569
-
On the spectrum of the Laplacian on regular metric trees
-
Solomyak, M. (2004). On the spectrum of the Laplacian on regular metric trees. Waves Random Media 14, S155-S171.
-
(2004)
Waves Random Media
, vol.14
-
-
Solomyak, M.1
-
15
-
-
3242853259
-
A central limit theorem for the parsimony length of trees
-
Steel, M., Goldstein, L. and Waterman, M. S. (1996). A central limit theorem for the parsimony length of trees. Adv. Appl. Prob. 28, 1051-1071. (Pubitemid 126513384)
-
(1996)
Advances in Applied Probability
, vol.28
, Issue.4
, pp. 1051-1071
-
-
Steel, M.1
Goldstein, L.2
Waterman, M.S.3
-
17
-
-
60849125769
-
Probability measures on metric spaces of nonpositive curvature. In Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, American Mathematical Society, Providence, RI
-
Sturm, K.-T. (2003). Probability measures on metric spaces of nonpositive curvature. In Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Contemp. Math. 338), American Mathematical Society, Providence, RI, pp. 357-390.
-
(2003)
Contemp. Math.
, vol.338
, pp. 357-390
-
-
Sturm, K.-T.1
|