메뉴 건너뛰기




Volumn 8, Issue 1, 2011, Pages

Construction of gene regulatory networks using biclustering and bayesian networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; CLUSTER ANALYSIS; GENE REGULATORY NETWORK; GENETIC DATABASE; GENETICS; RECEIVER OPERATING CHARACTERISTIC; REPRODUCIBILITY; SACCHAROMYCES CEREVISIAE; STATISTICAL MODEL;

EID: 80054757930     PISSN: None     EISSN: 17424682     Source Type: Journal    
DOI: 10.1186/1742-4682-8-39     Document Type: Article
Times cited : (23)

References (43)
  • 1
    • 63849342239 scopus 로고    scopus 로고
    • A Network Inference Workflow Applied to Virulence-Related Processes in Salmonella typhimurium
    • 10.1111/j.1749-6632.2008.03762.x 19348639
    • A Network Inference Workflow Applied to Virulence-Related Processes in Salmonella typhimurium. Ronald CT, Mudita S, Jennifer W, Saeed K, Liang S, Jason M, Ann N Y Acad Sci 2009 1158 143 158 10.1111/j.1749-6632.2008.03762.x 19348639
    • (2009) Ann N y Acad Sci , vol.1158 , pp. 143-158
    • Ronald, C.T.1    Mudita, S.2    Jennifer, W.3    Saeed, K.4    Liang, S.5    Jason, M.6
  • 2
    • 40349106161 scopus 로고    scopus 로고
    • The landscape of human proteins interacting with viruses and other pathogens
    • DOI 10.1371/journal.ppat.0040032
    • The Landscape of Human Proteins Interacting with Viruses and Other Pathogens. Dyer MD, Murali TM, Sobral BW, PLoS Pathog 2008 4 32 10.1371/journal.ppat.0040032 18282095 (Pubitemid 351340702)
    • (2008) PLoS Pathogens , vol.4 , Issue.2
    • Dyer, M.D.1    Murali, T.M.2    Sobral, B.W.3
  • 3
    • 0014671878 scopus 로고
    • Homeostasis and Differentiation in Random Genetic Control Networks
    • 10.1038/224177a0 5343519
    • Homeostasis and Differentiation in Random Genetic Control Networks. Kauffman S, Nature 1969 224 5215 177 178 10.1038/224177a0 5343519
    • (1969) Nature , vol.224 , Issue.5215 , pp. 177-178
    • Kauffman, S.1
  • 5
    • 25444476441 scopus 로고    scopus 로고
    • Systematic survey reveals general applicability of "guilt-by- association" within gene coexpression networks
    • DOI 10.1186/1471-2105-6-227
    • Systematic survey reveals general applicability of "guilt-by- association'' within gene coexpression networks. Wolfe C, Kohane I, Butte A, BMC Bioinformatics 2005 6 1 227 10.1186/1471-2105-6-227 16162296 (Pubitemid 41372439)
    • (2005) BMC Bioinformatics , vol.6 , pp. 227
    • Wolfe, C.J.1    Kohane, I.S.2    Butte, A.J.3
  • 8
    • 0033028596 scopus 로고    scopus 로고
    • Systematic determination of genetic network architecture
    • DOI 10.1038/10343
    • Systematic determination of genetic network architecture. Tavazoie S, Hughes J, Campbell M, Cho R, Church G, Nature Genetics 1999 22 281 285 10.1038/10343 10391217 (Pubitemid 29297256)
    • (1999) Nature Genetics , vol.22 , Issue.3 , pp. 281-285
    • Tavazoie, S.1    Hughes, J.D.2    Campbell, M.J.3    Cho, R.J.4    Church, G.M.5
  • 9
    • 17444430052 scopus 로고    scopus 로고
    • Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
    • DOI 10.1093/bioinformatics/bti226
    • Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Guthke R, Moller U, Hoffmann M, Thies F, Topfer S, Bioinformatics 2005 21 8 1626 1634 10.1093/bioinformatics/ bti226 15613398 (Pubitemid 40542721)
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1626-1634
    • Guthke, R.1    Moller, U.2    Hoffman, M.3    Thies, F.4    Topfer, S.5
  • 10
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • 10.1093/bioinformatics/16.8.707 11099257
    • Genetic network inference: from co-expression clustering to reverse engineering. D'haeseleer P, Liang S, Somogyi R, Bioinformatics 2000 16 8 707 726 10.1093/bioinformatics/16.8.707 11099257
    • (2000) Bioinformatics , vol.16 , Issue.8 , pp. 707-726
    • D'Haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 11
    • 33746067911 scopus 로고    scopus 로고
    • Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks
    • DOI 10.1186/1471-2105-7-280
    • Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. Reiss D, Baliga N, Bonneau R, BMC Bioinformatics 2006 7 1 280 10.1186/1471-2105-7-280 16749936 (Pubitemid 44069818)
    • (2006) BMC Bioinformatics , vol.7 , pp. 280
    • Reiss, D.J.1    Baliga, N.S.2    Bonneau, R.3
  • 12
    • 33646137384 scopus 로고    scopus 로고
    • A Systematic comparison and evaluation of biclustering methods for gene expression data
    • 10.1093/bioinformatics/btl060 16500941
    • A Systematic comparison and evaluation of biclustering methods for gene expression data. Prelic A, Bleuler S, Zimmermann P, Wille A, Buhlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E, Bioinformatics 2006 22 9 1122 1129 10.1093/bioinformatics/btl060 16500941
    • (2006) Bioinformatics , vol.22 , Issue.9 , pp. 1122-1129
    • Prelic, A.1    Bleuler, S.2    Zimmermann, P.3    Wille, A.4    Buhlmann, P.5    Gruissem, W.6    Hennig, L.7    Thiele, L.8    Zitzler, E.9
  • 13
    • 3142768191 scopus 로고    scopus 로고
    • Biclustering algorithms for biological data analysis: A survey
    • 10.1109/TCBB.2004.2 17048406
    • Biclustering algorithms for biological data analysis: a survey. Madeira SC, Oliveira AL, IEEE/ACM Trans Comput Biol Bioinform 2004 1 1 24 45 10.1109/TCBB.2004.2 17048406
    • (2004) IEEE/ACM Trans Comput Biol Bioinform , vol.1 , Issue.1 , pp. 24-45
    • Madeira, S.C.1    Oliveira, A.L.2
  • 14
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • Validating clustering for gene expression data. Yeung KY, Haynor DR, Ruzzo WL, Bioinformatics 17 4 309 318
    • Bioinformatics , vol.17 , Issue.4 , pp. 309-318
    • Yeung, K.Y.1    Haynor, D.R.2    Ruzzo, W.L.3
  • 15
    • 0037342510 scopus 로고    scopus 로고
    • Comparisons and validation of statistical clustering techniques for microarray gene expression data
    • DOI 10.1093/bioinformatics/btg025
    • Comparisons and validation of statistical clustering techniques for microarray gene expression data. Datta S, Datta S, Bioinformatics 2003 19 4 459 466 10.1093/bioinformatics/btg025 12611800 (Pubitemid 36336511)
    • (2003) Bioinformatics , vol.19 , Issue.4 , pp. 459-466
    • Datta, S.1    Datta, S.2
  • 16
    • 0036191191 scopus 로고    scopus 로고
    • A cluster validity framework for genome expression data
    • A cluster validity framework for genome expression data. Azuaje F, Bioinformatics 2002 18 2 319 320 10.1093/bioinformatics/18.2.319 11847080 (Pubitemid 34183110)
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 319-320
    • Azuaje, F.1
  • 17
    • 33646894725 scopus 로고    scopus 로고
    • BicAT: A biclustering analysis toolbox
    • DOI 10.1093/bioinformatics/btl099
    • BicAT: a biclustering analysis toolbox. Barkow S, Bleuler S, Prelic A, Zimmermann P, Zitzler E, Bioinformatics 2006 22 10 1282 1283 10.1093/bioinformatics/btl099 16551664 (Pubitemid 43779026)
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1282-1283
    • Barkow, S.1    Bleuler, S.2    Prelic, A.3    Zimmermann, P.4    Zitzler, E.5
  • 18
    • 33747813561 scopus 로고    scopus 로고
    • The inferelator: An algorithn for learning parsimonious regulatory networks from systems-biology data sets de novo
    • DOI 10.1186/gb-2006-7-5-r36
    • The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Bonneau R, Reiss D, Shannon P, Facciotti M, Hood L, Baliga N, Thorsson V, Genome Biology 2006 7 5 36 10.1186/gb-2006-7-5-r36 16686963 (Pubitemid 43885058)
    • (2006) Genome Biology , vol.7 , Issue.5
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.S.6    Thorsson, V.7
  • 23
    • 0242690489 scopus 로고    scopus 로고
    • Discovering Local Structure in Gene Expression Data: The Order-Preserving Submatrix Problem
    • DOI 10.1089/10665270360688075
    • Discovering local structure in gene expression data: the order-preserving submatrix problem. Ben-Dor A, Chor B, Karp R, Yakhini Z, Journal of Computational Biology 2003 10 373 384 10.1089/10665270360688075 12935334 (Pubitemid 37372155)
    • (2003) Journal of Computational Biology , vol.10 , Issue.3-4 , pp. 373-384
    • Ben-Dor, A.1    Chor, B.2    Karp, R.3    Yakhini, Z.4
  • 25
    • 0041627879 scopus 로고    scopus 로고
    • Extracting conserved gene expression motifs from gene expression data
    • Extracting conserved gene expression motifs from gene expression data. Murali TM, S K, Pac Symp Biocomput 2003 77 88
    • (2003) Pac Symp Biocomput , pp. 77-88
    • Murali, T.M.1
  • 26
    • 8344260765 scopus 로고    scopus 로고
    • A Comprehensive Overview of Basic Clustering Algorithms
    • A Comprehensive Overview of Basic Clustering Algorithms. Fung G, Citeseer 2001 1 37
    • (2001) Citeseer , pp. 1-37
    • Fung, G.1
  • 27
    • 33845864692 scopus 로고    scopus 로고
    • Computing the maximum similarity bi-clusters of gene expression data
    • DOI 10.1093/bioinformatics/btl560
    • Computing the maximum similarity bi-clusters of gene expression data. Liu X, Wang L, Bioinformatics 2007 23 1 50 56 10.1093/bioinformatics/btl560 17090578 (Pubitemid 46017855)
    • (2007) Bioinformatics , vol.23 , Issue.1 , pp. 50-56
    • Liu, X.1    Wang, L.2
  • 29
    • 17644412264 scopus 로고    scopus 로고
    • Bayesian Network Analysis of Signaling Networks: A Primer
    • Bayesian Network Analysis of Signaling Networks: A Primer. Dana Pe, Sci STKE 2005 2005 281 4
    • (2005) Sci STKE , vol.2005 , Issue.281 , pp. 124
    • Dana, P.1
  • 31
    • 0036699526 scopus 로고    scopus 로고
    • Revealing modular organization in the yeast transcriptional network
    • DOI 10.1038/ng941
    • Revealing modular organization in the yeast transcriptional network. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N, Nature Genetics 2002 31 370 377 12134151 (Pubitemid 35154445)
    • (2002) Nature Genetics , vol.31 , Issue.4 , pp. 370-377
    • Ihmels, J.1    Friedlander, G.2    Bergmann, S.3    Sarig, O.4    Ziv, Y.5    Barkai, N.6
  • 32
    • 34548735304 scopus 로고    scopus 로고
    • BiVisu: Software tool for bicluster detection and visualization
    • DOI 10.1093/bioinformatics/btm338
    • BiVisu: software tool for bicluster detection and visualization. Cheng KO, Law NF, Siu WC, Lau TH, Bioinformatics 2007 23 17 2342 2344 10.1093/bioinformatics/btm338 17586826 (Pubitemid 47423876)
    • (2007) Bioinformatics , vol.23 , Issue.17 , pp. 2342-2344
    • Cheng, K.O.1    Law, N.F.2    Siu, W.C.3    Lau, T.H.4
  • 33
    • 33847296282 scopus 로고    scopus 로고
    • BioNetBuilder: Automatic integration of biological networks
    • DOI 10.1093/bioinformatics/btl604
    • BioNetBuilder: automatic integration of biological networks. Avila-Campillo I, Drew K, Lin J, Reiss DJ, Bonneau R, Bioinformatics 2007 23 3 392 393 10.1093/bioinformatics/btl604 17138585 (Pubitemid 46323169)
    • (2007) Bioinformatics , vol.23 , Issue.3 , pp. 392-393
    • Avila-Campillo, I.1    Lin, J.2    Reiss, D.J.3    Bonneau, R.4
  • 36
    • 38349164409 scopus 로고    scopus 로고
    • Computing topological parameters of biological networks
    • 10.1093/bioinformatics/btm554 18006545
    • Computing topological parameters of biological networks. Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M, Bioinformatics 2008 24 2 282 284 10.1093/bioinformatics/btm554 18006545
    • (2008) Bioinformatics , vol.24 , Issue.2 , pp. 282-284
    • Assenov, Y.1    Ramirez, F.2    Schelhorn, S.E.3    Lengauer, T.4    Albrecht, M.5
  • 37
    • 2942552459 scopus 로고    scopus 로고
    • An automated method for finding molecular complexes in large protein interaction networks
    • DOI 10.1186/1471-2105-4-2
    • An automated method for finding molecular complexes in large protein interaction networks. Bader G, Hogue C, BMC Bioinformatics 2003 4 1 2 10.1186/1471-2105-4-2 12525261 (Pubitemid 38751268)
    • (2003) BMC Bioinformatics , vol.4 , pp. 2
    • Bader, G.D.1    Hogue, C.W.V.2
  • 38
    • 24044440971 scopus 로고    scopus 로고
    • BiNGO: A Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks
    • DOI 10.1093/bioinformatics/bti551
    • BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Maere S, Heymans K, Kuiper M, Bioinformatics 2005 21 16 3448 3449 10.1093/bioinformatics/bti551 15972284 (Pubitemid 41222459)
    • (2005) Bioinformatics , vol.21 , Issue.16 , pp. 3448-3449
    • Maere, S.1    Heymans, K.2    Kuiper, M.3
  • 39
    • 66349115724 scopus 로고    scopus 로고
    • Grouped graphical Granger modeling for gene expression regulatory networks discovery
    • 10.1093/bioinformatics/btp199 19477976
    • Grouped graphical Granger modeling for gene expression regulatory networks discovery. Lozano AC, Abe N, Liu Y, Rosset S, Bioinformatics 2009 25 12 110 118 10.1093/bioinformatics/btp199 19477976
    • (2009) Bioinformatics , vol.25 , Issue.12 , pp. 9110-118
    • Lozano, A.C.1    Abe, N.2    Liu, Y.3    Rosset, S.4
  • 40
    • 33745622668 scopus 로고    scopus 로고
    • An effective structure learning method for constructing gene networks
    • DOI 10.1093/bioinformatics/btl090
    • An effective structure learning method for constructing gene networks. Chen Xw, Anantha G, Wang X, Bioinformatics 2006 22 11 1367 1374 10.1093/bioinformatics/btl090 16543279 (Pubitemid 43985273)
    • (2006) Bioinformatics , vol.22 , Issue.11 , pp. 1367-1374
    • Chen, X.-W.1    Anantha, G.2    Wang, X.3
  • 41
    • 77957669092 scopus 로고    scopus 로고
    • Inferring species interaction networks from species abundance data: A comparative evaluation of various statistical and machine learning methods
    • 10.1016/j.ecoinf.2010.06.005
    • Inferring species interaction networks from species abundance data: A comparative evaluation of various statistical and machine learning methods. Faisal A, Dondelinger F, Husmeier D, Beale CM, Ecological Informatics 2010 5 6 451 464 10.1016/j.ecoinf.2010.06.005
    • (2010) Ecological Informatics , vol.5 , Issue.6 , pp. 451-464
    • Faisal, A.1    Dondelinger, F.2    Husmeier, D.3    Beale, C.M.4
  • 42
    • 0242490780 scopus 로고    scopus 로고
    • Cytoscape: A software Environment for integrated models of biomolecular interaction networks
    • DOI 10.1101/gr.1239303
    • Cytoscape: a software environment for integrated models of biomolecular interaction networks. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B, Ideker T, Genome Res 2003 13 11 2498 2504 10.1101/gr.1239303 14597658 (Pubitemid 37428274)
    • (2003) Genome Research , vol.13 , Issue.11 , pp. 2498-2504
    • Shannon, P.1    Markiel, A.2    Ozier, O.3    Baliga, N.S.4    Wang, J.T.5    Ramage, D.6    Amin, N.7    Schwikowski, B.8    Ideker, T.9
  • 43
    • 11244306358 scopus 로고    scopus 로고
    • Discovering statistically significant biclusters in gene expression data
    • 12169541
    • Discovering statistically significant biclusters in gene expression data. Tanay A, Sharan R, Shamir R, Bioinformatics 2002 18 suppl-1 136 144 12169541
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1 , pp. 19136-144
    • Tanay, A.1    Sharan, R.2    Shamir, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.