메뉴 건너뛰기




Volumn 105, Issue 1, 2012, Pages 241-257

Exceedance probability of the integral of a stochastic process

Author keywords

Extreme value theory; Max stable processes; Pareto distribution; Spatial dependence; Tail probability estimation

Indexed keywords


EID: 80054743902     PISSN: 0047259X     EISSN: 10957243     Source Type: Journal    
DOI: 10.1016/j.jmva.2011.08.020     Document Type: Article
Times cited : (20)

References (19)
  • 1
    • 25144447744 scopus 로고
    • Extreme values of independent stochastic processes
    • Brown B., Resnick S.I. Extreme values of independent stochastic processes. J. Appl. Probab. 1977, 14:732-739.
    • (1977) J. Appl. Probab. , vol.14 , pp. 732-739
    • Brown, B.1    Resnick, S.I.2
  • 2
    • 67449110829 scopus 로고    scopus 로고
    • On spatial extremes; with application to a rainfall problem
    • Buishand A., de Haan L., Zhou C. On spatial extremes; with application to a rainfall problem. Ann. Appl. Stat. 2008, 2:624-642.
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 624-642
    • Buishand, A.1    de Haan, L.2    Zhou, C.3
  • 3
    • 0000526969 scopus 로고    scopus 로고
    • Modelling extremes of the areal rainfall process
    • Coles S.G., Tawn J.A. Modelling extremes of the areal rainfall process. J. R. Statist. Soc. B 1996, 58:329-347.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 329-347
    • Coles, S.G.1    Tawn, J.A.2
  • 4
    • 34548761070 scopus 로고    scopus 로고
    • Bayesian spatial modeling of extreme precipitation return levels
    • Cooley D., Nychka D., Naveau Ph. Bayesian spatial modeling of extreme precipitation return levels. J. Amer. Statist. Assoc. 2006, 102:824-840.
    • (2006) J. Amer. Statist. Assoc. , vol.102 , pp. 824-840
    • Cooley, D.1    Nychka, D.2    Naveau, P.3
  • 5
    • 0000522339 scopus 로고
    • A spectral representation for max-stable processes
    • de Haan L. A spectral representation for max-stable processes. Ann. Probab. 1984, 12:1194-1204.
    • (1984) Ann. Probab. , vol.12 , pp. 1194-1204
    • de Haan, L.1
  • 7
    • 0035533105 scopus 로고    scopus 로고
    • On convergence toward an extreme-value distribution in C[0, 1]
    • de Haan L., Lin T. On convergence toward an extreme-value distribution in C[0, 1]. Ann. Probab. 2001, 29:467-483.
    • (2001) Ann. Probab. , vol.29 , pp. 467-483
    • de Haan, L.1    Lin, T.2
  • 8
    • 33744803478 scopus 로고    scopus 로고
    • Spatial extremes: models for the stationary case
    • de Haan L., Pereira T.T. Spatial extremes: models for the stationary case. Ann. Statist. 2006, 34:146-168.
    • (2006) Ann. Statist. , vol.34 , pp. 146-168
    • de Haan, L.1    Pereira, T.T.2
  • 10
    • 0001760675 scopus 로고
    • A moment estimator for the index of an extreme-value distribution
    • Dekkers A.L.M., Einmahl J.H.J., de Haan L. A moment estimator for the index of an extreme-value distribution. Ann. Statist. 1989, 17:1833-1855.
    • (1989) Ann. Statist. , vol.17 , pp. 1833-1855
    • Dekkers, A.L.M.1    Einmahl, J.H.J.2    de Haan, L.3
  • 11
    • 33750224092 scopus 로고    scopus 로고
    • A hierarchical model for extreme wind speeds
    • Fawcett L., Walshaw D. A hierarchical model for extreme wind speeds. Appl. Stat. 2006, 55:631-646.
    • (2006) Appl. Stat. , vol.55 , pp. 631-646
    • Fawcett, L.1    Walshaw, D.2
  • 12
    • 67651231033 scopus 로고    scopus 로고
    • Hierarchical modeling for extreme values observed over space and time
    • Gelfand A.E., Sang H. Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 2009, 16:407-426.
    • (2009) Environ. Ecol. Stat. , vol.16 , pp. 407-426
    • Gelfand, A.E.1    Sang, H.2
  • 13
    • 0007422459 scopus 로고
    • Max-infinitely divisible and max-stable sample coninuous processes
    • Giné E., Hahn M.G., Vatan P. Max-infinitely divisible and max-stable sample coninuous processes. Probab. Theary Related Fields 1990, 87:139-165.
    • (1990) Probab. Theary Related Fields , vol.87 , pp. 139-165
    • Giné, E.1    Hahn, M.G.2    Vatan, P.3
  • 15
    • 70450243669 scopus 로고    scopus 로고
    • Stationary max-stable fields associated to negative definite functions
    • Kabluchko Z., Schlather M., de Haan L. Stationary max-stable fields associated to negative definite functions. Ann. Probab. 2009, 37:2042-2065.
    • (2009) Ann. Probab. , vol.37 , pp. 2042-2065
    • Kabluchko, Z.1    Schlather, M.2    de Haan, L.3
  • 17
    • 0043010091 scopus 로고
    • Max-stable processes and spatial extremes
    • R.L. Smith, 1990. Max-stable processes and spatial extremes. Unpublished notes.
    • (1990) Unpublished notes.
    • Smith, R.L.1
  • 18
    • 33747697079 scopus 로고    scopus 로고
    • Extremal stochastic integral: a parallel between max-stable processes and α-stable processes
    • Stoev S.A., Taqqu M.S. Extremal stochastic integral: a parallel between max-stable processes and α-stable processes. Extremes 2005, 8:237-266.
    • (2005) Extremes , vol.8 , pp. 237-266
    • Stoev, S.A.1    Taqqu, M.S.2
  • 19
    • 74149086146 scopus 로고    scopus 로고
    • On the estimation and application of max-stable processes
    • Zhang Z., Smith R.L. On the estimation and application of max-stable processes. J. Stat. Plan. Infer. 2010, 140:1135-1153.
    • (2010) J. Stat. Plan. Infer. , vol.140 , pp. 1135-1153
    • Zhang, Z.1    Smith, R.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.