-
1
-
-
39149113801
-
Numerical irreversibility in self-gravitating small N-body systems
-
Komatsu, N., Kiwata, T., and Kimura, S., Numerical irreversibility in self-gravitating small N-body systems, Physica A 387 (2008), pp.2267-2278.
-
(2008)
Physica A
, vol.387
, pp. 2267-2278
-
-
Komatsu, N.1
Kiwata, T.2
Kimura, S.3
-
2
-
-
0001105168
-
Most probable phase distribution in spherical star systems and conditions for its existence
-
in J. Goodman and P. Hut (eds.)
-
Antonov, V. A., Most probable phase distribution in spherical star systems and conditions for its existence in J. Goodman and P. Hut (eds.), Dynamics of Star Clusters, (IAU 1985), pp.525-540
-
(1985)
Dynamics of Star Clusters
, pp. 525-540
-
-
Antonov, V.A.1
-
3
-
-
0000034685
-
Statistical mechanics of gravitating systems
-
Padmanabhan, T., Statistical mechanics of gravitating systems, Phys. Rep. 188 (1990), pp.285-362
-
(1990)
Phys. Rep.
, vol.188
, pp. 285-362
-
-
Padmanabhan, T.1
-
4
-
-
0242495207
-
Collapses and explosions in self-gravitating systems
-
Ispolatov, I., and Karttunen, M., Collapses and explosions in self-gravitating systems, Phys. Rev. E. 68 (2003), pp.036117 1-9.
-
(2003)
Phys. Rev. E.
, vol.68
, pp. 1-9
-
-
Ispolatov, I.1
Karttunen, M.2
-
5
-
-
33646650705
-
Reversible multiple time scale molecular dynamics
-
Tuckerman, M., Berne, B. J., and Martyna, G. J., Reversible multiple time scale molecular dynamics, J. Chem. Phys. 97 (1992), pp.1990-2001.
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 1990-2001
-
-
Tuckerman, M.1
Berne, B.J.2
Martyna, G.J.3
-
8
-
-
0001672136
-
Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods
-
Gray, S. K., Noid, D. W., and Sumpter, B. G., Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods, J. Chem. Phys. 101 (1994), pp.4062-4072.
-
(1994)
J. Chem. Phys.
, vol.101
, pp. 4062-4072
-
-
Gray, S.K.1
Noid, D.W.2
Sumpter, B.G.3
-
9
-
-
73649144532
-
Higher-order symplectic integration in Born-Oppenheimer molecular dynamics
-
Odell, A., Delin, A., Johansson, B., Bock, N., Challacombe, M., and Niklasson, A. M. N., Higher-order symplectic integration in Born-Oppenheimer molecular dynamics, J. Chem. Phys. 131 (2009), pp.244106 1-10.
-
(2009)
J. Chem. Phys.
, vol.131
, pp. 1-10
-
-
Odell, A.1
Delin, A.2
Johansson, B.3
Bock, N.4
Challacombe, M.5
Niklasson, A.M.N.6
-
10
-
-
0020798563
-
A Canonical integration technique
-
NS-30
-
Ruth, R. D., A Canonical integration technique, IEEE. Trans. Nucl. Sci. NS-30 (1983), pp.2669-2671.
-
(1983)
IEEE. Trans. Nucl. Sci.
, pp. 2669-2671
-
-
Ruth, R.D.1
-
11
-
-
0346653215
-
The accuracy of symplectic integrators
-
McLachlan, R. I., and Atela, P., The accuracy of symplectic integrators, Nonlinearity 5 (1992), pp.541-562.
-
(1992)
Nonlinearity
, vol.5
, pp. 541-562
-
-
McLachlan, R.I.1
Atela, P.2
-
12
-
-
33646388286
-
Fourth-order symplectic integration
-
Forest, É., and Ruth, R. D., Fourth-order symplectic integration, Physica D 43 (1990), pp.105-117.
-
(1990)
Physica D
, vol.43
, pp. 105-117
-
-
Ruth, R.D.1
-
13
-
-
0003171736
-
A symplectic integration algorithm for separable Hamiltonian functions
-
Candy, J., and Rozmus, W., A symplectic integration algorithm for separable Hamiltonian functions, J. Comput. Phys. 92 (1991), pp.230-256.
-
(1991)
J. Comput. Phys.
, vol.92
, pp. 230-256
-
-
Candy, J.1
Rozmus, W.2
-
14
-
-
0001005075
-
Construction of higher order symplectic integrators
-
Yoshida, H., Construction of higher order symplectic integrators, Phys. Lett. A 150 (1990), pp.262-268.
-
(1990)
Phys. Lett. A.
, vol.150
, pp. 262-268
-
-
Yoshida, H.1
-
15
-
-
0000194427
-
On the numerical integration of ordinary differential equations by symmetric composition methods
-
McLachlan, R. I., On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM J. Sci. Comput. 16 (1995), pp.151-168.
-
(1995)
SIAM J. Sci. Comput.
, vol.16
, pp. 151-168
-
-
McLachlan, R.I.1
-
16
-
-
34249921769
-
Symplectic integrators and their application to dynamical astronomy
-
Kinoshita, H., Yoshida, H., and Nakai, H., Symplectic integrators and their application to dynamical astronomy, Celes. Mech. Dynamic. Astron. 50 (1991), pp.59-71.
-
(1991)
Celes. Mech. Dynamic. Astron.
, vol.50
, pp. 59-71
-
-
Kinoshita, H.1
Yoshida, H.2
Nakai, H.3
-
18
-
-
3542994480
-
Symplectic methods of fifth order for the numerical solution of the radial Shrödinger equation
-
Tselios, K., and Simos, T. E., Symplectic methods of fifth order for the numerical solution of the radial Shrödinger equation, J. Math. Chem. 35 (2004), pp.55-63.
-
(2004)
J. Math. Chem.
, vol.35
, pp. 55-63
-
-
Tselios, K.1
Simos, T.E.2
-
20
-
-
0000155361
-
The accuracy of floating point summation
-
Higham, N. J., The accuracy of floating point summation, SIAM J. Sci. Comput. 14 (1993), pp.783-799.
-
(1993)
SIAM J. Sci. Comput.
, vol.14
, pp. 783-799
-
-
Higham, N.J.1
-
21
-
-
33646234930
-
Geometric integrators for ODEs
-
McLachlan, R. I., and Quispel, G. R. W., Geometric integrators for ODEs, J. Phys. A: Math. Gen. 39 (2006), pp.5251-5285.
-
(2006)
J. Phys. A: Math. Gen.
, vol.39
, pp. 5251-5285
-
-
McLachlan, R.I.1
Quispel, G.R.W.2
-
22
-
-
0004161838
-
-
Cambridge
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd ed. (Cambridge, 1992), pp.604-605.]
-
(1992)
Numerical Recipes in Fortran: The Art of Scientific Computing
, pp. 604-605
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
24
-
-
0001256263
-
On the reliability of gravitational N-body integrators
-
Quinlan, D. G. and Tremaine, S., On the reliability of gravitational N-body integrators, Mon. Not. R. Astron. Soc. 259 (1992), pp.505-518.
-
(1992)
Mon. Not. R. Astron. Soc.
, vol.259
, pp. 505-518
-
-
Quinlan, D.G.1
Tremaine, S.2
|