메뉴 건너뛰기




Volumn , Issue , 2011, Pages 725-732

Fast autonomous growing neural gas

Author keywords

[No Author keywords available]

Indexed keywords

COMPARATIVE EXPERIMENTS; GROWING NEURAL GAS; GROWING NEURAL GAS NETWORKS; INCREMENTAL MODELS; INPUT DATAS; INPUT SPACE; MULTIPLE NEURONS; NON-LINEAR; RAPID ADAPTATION; REAL-TIME APPLICATION; SELF-ORGANIZING NEURAL NETWORK; TIME CONSTRAINTS; TIME RESTRICTION; TOPOLOGICAL MAP;

EID: 80054718288     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2011.6033293     Document Type: Conference Paper
Times cited : (8)

References (26)
  • 2
    • 0004090577 scopus 로고    scopus 로고
    • Springer-Verlag, Berlin Heidelberg
    • T. Kohonen, Self-Organising Maps, Springer-Verlag, Berlin Heidelberg, 200J.
    • (2001) Self-Organising Maps
    • Kohonen, T.1
  • 3
    • 0001132486 scopus 로고
    • Competitive hebbian learning rule forms perfectly topology preserving maps
    • T. Martinetz, T, Competitive hebbian learning rule forms perfectly topology preserving maps, In Proccedings of ICANN, 1993.
    • (1993) Proccedings of ICANN
    • Martinetz, T.T.1
  • 4
    • 0000773486 scopus 로고
    • A growing neural gas network learns topologies
    • G. Tesauro, D.S. Touretzky y T.K. Leen (eds.), MIT Press, Cambridge, Mass.
    • B. Fritzke, A Growing Neural Gas Network Learns Topologies, In Advances in Neural Information Processing Systems 7, G. Tesauro, D.S. Touretzky y T.K. Leen (eds.), MIT Press, Cambridge, Mass., 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.7
    • Fritzke, B.1
  • 6
    • 0001948145 scopus 로고
    • Fast learning with incremental RBF networks
    • B. Fritzke, Fast learning with incremental RBF networks, Neural Processing Letters, 1(1):2-5, 1994.
    • (1994) Neural Processing Letters , vol.1 , Issue.1 , pp. 2-5
    • Fritzke, B.1
  • 7
    • 0036789790 scopus 로고    scopus 로고
    • A self-organizing network that grows when required
    • S. Marsland, J. Shapiro and U. Nehmzow, A self-organizing network that grows when required, Neural Networks, 15, 1041-1058, 2002.
    • (2002) Neural Networks , vol.15 , pp. 1041-1058
    • Marsland, S.1    Shapiro, J.2    Nehmzow, U.3
  • 8
    • 30644459258 scopus 로고    scopus 로고
    • An incremental network for on-line unsupervised classification and topology learning
    • S. Furao, O. Hasegawa , An incremental network for on-line unsupervised classification and topology learning, Neural networks, 19, 90-106, 2006.
    • (2006) Neural Networks , vol.19 , pp. 90-106
    • Furao, S.1    Hasegawa, O.2
  • 10
    • 17644426978 scopus 로고    scopus 로고
    • Mapping the dimensionality, density and topology of data: The growing adaptative neural gas
    • Z. Cselényi , Mapping the dimensionality, density and topology of data: The growing adaptative neural gas, Computer Methods and Programs in Biomedicine 78:141-156, 2005.
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , pp. 141-156
    • Cselényi, Z.1
  • 11
    • 9144254114 scopus 로고    scopus 로고
    • Robust growing neural gas algorithm with application in cluster analysis
    • A.K. Qin, P.N. Suganthan, Robust growing neural gas algorithm with application in cluster analysis, Neural Netwoks 17, 1135-1148, 2004.
    • (2004) Neural Netwoks , vol.17 , pp. 1135-1148
    • Qin, A.K.1    Suganthan, P.N.2
  • 12
    • 84886999798 scopus 로고    scopus 로고
    • TreeGNG - Hierarchical topological clustering
    • K. Doherty, R. Adams, N. Davey, TreeGNG - hierarchical topological clustering, ESANN: 19-24, 2005
    • (2005) ESANN , pp. 19-24
    • Doherty, K.1    Adams, R.2    Davey, N.3
  • 13
    • 77957936414 scopus 로고    scopus 로고
    • Growing neural gas for temporal clustering
    • I.J. Sledge, J.M. Keller, Growing neural gas for temporal clustering, ICPR: 1-4, 2008
    • (2008) ICPR , pp. 1-4
    • Sledge, I.J.1    Keller, J.M.2
  • 17
    • 33747885940 scopus 로고    scopus 로고
    • Growing neural gas (GNG): A soft competitive learning method for 2D hand modeling
    • J. García-Rodríguez, A. Angelopoulou, A. Psarrou, Growing neural gas (GNG): A soft competitive learning method for 2D hand modeling, IEICE Transactions 89-D(7): 2124-2131 (2006)
    • (2006) IEICE Transactions , vol.89 D , Issue.7 , pp. 2124-2131
    • García-Rodríguez, J.1    Angelopoulou, A.2    Psarrou, A.3
  • 19
    • 2942717106 scopus 로고    scopus 로고
    • Video shot motion characterization based on hierachical overlapped growing neural gas networks
    • X. Cao, P.N. Suganthan, Video shot motion characterization based on hierachical overlapped growing neural gas networks, Multimedia Systems 9:378-385, 2003.
    • (2003) Multimedia Systems , vol.9 , pp. 378-385
    • Cao, X.1    Suganthan, P.N.2
  • 21
    • 41149114149 scopus 로고    scopus 로고
    • Three-dimensional surface reconstruction using meshing growing neural gas (MGNG)
    • Y. Holdstein, A. Fischer, Three-dimensional Surface Reconstruction Using Meshing Growing Neural Gas (MGNG), Visual Computation, 24:295-302, 2008.
    • (2008) Visual Computation , vol.24 , pp. 295-302
    • Holdstein, Y.1    Fischer, A.2
  • 22
    • 0027632248 scopus 로고
    • "Neural-Gas" network for vector quantization and its application to time-series prediction
    • T. Martinetz, S.G. Berkovich, K.J. Schulten, "Neural-Gas" Network for Vector Quantization and its Application to Time-Series Prediction, IEEE Transactions on Neural Networks, 4(4):558-569, 1993.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.G.2    Schulten, K.J.3
  • 25
    • 0032784636 scopus 로고    scopus 로고
    • Neural maps and topographic vector quantization
    • H-U Bauer, M. Hermann, M., T.Villmann, Neural Maps and Topographic Vector Quantization. Neural Networks, 12(4-5):659-676, 1999.
    • (1999) Neural Networks , vol.12 , Issue.4-5 , pp. 659-676
    • Bauer, H.-U.1    Hermann, M.M.2    Villmann, T.3
  • 26
    • 33845619309 scopus 로고    scopus 로고
    • PETS04 surveillance ground truth data set
    • R. B. Fisher. "PETS04 Surveillance Ground Truth Data Set". Proc. Sixth IEEE PETS04, pp 1-5, 2004.
    • (2004) Proc. Sixth IEEE PETS04 , pp. 1-5
    • Fisher, R.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.