메뉴 건너뛰기




Volumn , Issue , 2011, Pages

A principled evaluation of ensembles of learning machines for software effort estimation

Author keywords

Ensembles of learning machines; Machine learning; Software cost effort estimation

Indexed keywords

DATA SETS; DIVERSITY METHOD; ENSEMBLE METHODS; FEATURE WEIGHT; GAIN INSIGHT; LEARNING MACHINES; MACHINE-LEARNING; REGRESSION TREES; SELFTUNING; SOFTWARE COST/EFFORT ESTIMATION; SOFTWARE EFFORT ESTIMATION; SOFTWARE MANAGEMENT;

EID: 80054057515     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020390.2020399     Document Type: Conference Paper
Times cited : (25)

References (34)
  • 2
    • 48649104763 scopus 로고    scopus 로고
    • Software effort estimation using machine learning methods
    • Ankara
    • B. Baskeles, B. Turhan, and A. Bener. Software effort estimation using machine learning methods. In ISCIS'07, pages 1-6, Ankara, 2007.
    • (2007) ISCIS'07 , pp. 1-6
    • Baskeles, B.1    Turhan, B.2    Bener, A.3
  • 6
    • 48949110120 scopus 로고    scopus 로고
    • Bagging predictors for estimation of software project effort
    • Orlando
    • P. L. Braga, A. Oliveira, G. Ribeiro, and S. Meira. Bagging predictors for estimation of software project effort. In IJCNN'07, pages 1595-1600, Orlando, 2007.
    • (2007) IJCNN'07 , pp. 1595-1600
    • Braga, P.L.1    Oliveira, A.2    Ribeiro, G.3    Meira, S.4
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 84943171173 scopus 로고    scopus 로고
    • Dealing with missing software project data
    • Sydney
    • M. Cartwright, M. Shepperd, and Q. Song. Dealing with missing software project data. In METRICS'03, pages 154-165, Sydney, 2003.
    • (2003) METRICS'03 , pp. 154-165
    • Cartwright, M.1    Shepperd, M.2    Song, Q.3
  • 9
    • 72149122081 scopus 로고
    • Regularized negative correlation learning for neural network ensembles
    • H. Chen and X. Yao. Regularized negative correlation learning for neural network ensembles. IEEE TNN, 20(12):1962-1979, 2009.
    • (1962) IEEE TNN , vol.20 , Issue.12 , pp. 2009
    • Chen, H.1    Yao, X.2
  • 10
    • 80054086770 scopus 로고    scopus 로고
    • Measuring diversity in regression ensembles
    • Bangalore, India
    • H. Dutta. Measuring diversity in regression ensembles. In IICAI'09, page 17p, Bangalore, India, 2009.
    • (2009) IICAI'09 , pp. 17
    • Dutta, H.1
  • 11
    • 0346896359 scopus 로고    scopus 로고
    • A simulation study of the model evaluation criterion mmre
    • T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation study of the model evaluation criterion mmre. IEEE TSE, 29(11):985-995, 2003.
    • (2003) IEEE TSE , vol.29 , Issue.11 , pp. 985-995
    • Foss, T.1    Stensrud, E.2    Kitchenham, B.3    Myrtveit, I.4
  • 13
    • 0000916783 scopus 로고    scopus 로고
    • Practical feature subset selection for machine learning
    • Perth, Australia
    • M. A. Hall and L. A. Smith. Practical feature subset selection for machine learning. In ACSC'98, pages 181-191, Perth, Australia, 1998.
    • (1998) ACSC'98 , pp. 181-191
    • Hall, M.A.1    Smith, L.A.2
  • 15
    • 0036888053 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models for estimating software development effort
    • A. Heiat. Comparison of artificial neural network and regression models for estimating software development effort. Information and Software Technology, 44:911-922, 2002.
    • (2002) Information and Software Technology , vol.44 , pp. 911-922
    • Heiat, A.1
  • 16
    • 80054081139 scopus 로고    scopus 로고
    • ISBSG. The International Software Benchmarking Standards Group. http://www.isbsg.org, 2011.
    • (2011)
  • 17
    • 33845788381 scopus 로고    scopus 로고
    • A systematic review of software development cost estimation studies
    • M. Jorgensen and M. Shepperd. A systematic review of software development cost estimation studies. IEEE TSE, 33(1):33-53, 2007.
    • (2007) IEEE TSE , vol.33 , Issue.1 , pp. 33-53
    • Jorgensen, M.1    Shepperd, M.2
  • 18
    • 34247611323 scopus 로고    scopus 로고
    • Cross versus within-company cost estimation studies: A systematic review
    • B. A. Kitchenham, E. Mendes, and G. H. Travassos. Cross versus within-company cost estimation studies: A systematic review. IEEE TSE, 33(5):316-329, 2007.
    • (2007) IEEE TSE , vol.33 , Issue.5 , pp. 316-329
    • Kitchenham, B.A.1    Mendes, E.2    Travassos, G.H.3
  • 19
    • 84870543128 scopus 로고    scopus 로고
    • Combining multiple learners induced on multiple datasets for software effort prediction
    • Mysuru, India
    • E. Kocaguneli, A. Bener, and Y. Kultur. Combining multiple learners induced on multiple datasets for software effort prediction. In ISSRE'07, Mysuru, India, 2009.
    • (2009) ISSRE'07
    • Kocaguneli, E.1    Bener, A.2    Kultur, Y.3
  • 20
    • 84859738390 scopus 로고    scopus 로고
    • Exploiting the essential assumptions of analogy-based effort estimation
    • preprint
    • E. Kocaguneli, T. Menzies, A. Bener, and J. W. Keung. Exploiting the essential assumptions of analogy-based effort estimation. IEEE TSE, 2011 (preprint).
    • (2011) IEEE TSE
    • Kocaguneli, E.1    Menzies, T.2    Bener, A.3    Keung, J.W.4
  • 21
    • 67650429656 scopus 로고    scopus 로고
    • Ensemble of neural networks with associative memory (ENNA) for estimating software development costs
    • Y. Kultur, B. Turhan, and A. Bener. Ensemble of neural networks with associative memory (ENNA) for estimating software development costs. Knowledge-Based Systems, 22:395-402, 2009.
    • (2009) Knowledge-Based Systems , vol.22 , pp. 395-402
    • Kultur, Y.1    Turhan, B.2    Bener, A.3
  • 22
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks, 12:1399-1404, 1999.
    • (1999) Neural Networks , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 23
    • 0033280266 scopus 로고    scopus 로고
    • Simultaneous training of negatively correlated neural networks in an ensemble
    • Y. Liu and X. Yao. Simultaneous training of negatively correlated neural networks in an ensemble. IEEE TSMC - Part B: Cybernetics, 29(6):716-725, 1999.
    • (1999) IEEE TSMC - Part B: Cybernetics , vol.29 , Issue.6 , pp. 716-725
    • Liu, Y.1    Yao, X.2
  • 24
    • 33947307636 scopus 로고    scopus 로고
    • Selecting best practices for effort estimation
    • T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting best practices for effort estimation. IEEE TSE, 32(11):883-895, 2006.
    • (2006) IEEE TSE , vol.32 , Issue.11 , pp. 883-895
    • Menzies, T.1    Chen, Z.2    Hihn, J.3    Lum, K.4
  • 27
    • 57049145989 scopus 로고    scopus 로고
    • An empirical analysis of software effort estimation with outlier elimination
    • Leipzig
    • Y.-S. Seo, K.-A. Yoon, and D.-H. Bae. An empirical analysis of software effort estimation with outlier elimination. In PROMISE, pages 25-32, Leipzig, 2008.
    • (2008) PROMISE , pp. 25-32
    • Seo, Y.-S.1    Yoon, K.-A.2    Bae, D.-H.3
  • 28
    • 0035506767 scopus 로고    scopus 로고
    • Comparing software prediction techniques using simulation
    • M. Shepperd and G. Kadoda. Comparing software prediction techniques using simulation. IEEE TSE, 27(11):1014-1022, 2001.
    • (2001) IEEE TSE , vol.27 , Issue.11 , pp. 1014-1022
    • Shepperd, M.1    Kadoda, G.2
  • 29
    • 0029255026 scopus 로고
    • Machine learning approaches to estimating software development effort
    • K. Srivasan and D. Fisher. Machine learning approaches to estimating software development effort. IEEE TSE, 21(2):126-137, 1995.
    • (1995) IEEE TSE , vol.21 , Issue.2 , pp. 126-137
    • Srivasan, K.1    Fisher, D.2
  • 30
    • 51949115475 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models in software effort estimation
    • Orlando
    • I. F. B. Tronto, J. D. S. Silva, and N. Sant'Anna. Comparison of artificial neural network and regression models in software effort estimation. In IJCNN'07, pages 771-776, Orlando, 2007.
    • (2007) IJCNN'07 , pp. 771-776
    • Tronto, I.F.B.1    Silva, J.D.S.2    Sant'anna, N.3
  • 31
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1(6):80-83, 1945.
    • (1945) Biometrics , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 33
    • 0031187569 scopus 로고    scopus 로고
    • Estimating software development effort with connectionist models
    • G. Wittig and G. Finnie. Estimating software development effort with connectionist models. Information and Software Technology, 39:469-476, 1997.
    • (1997) Information and Software Technology , vol.39 , pp. 469-476
    • Wittig, G.1    Finnie, G.2
  • 34
    • 43049157582 scopus 로고    scopus 로고
    • Comparison of decision tree methods for finding active objects
    • Y. Zhao and Y. Zhang. Comparison of decision tree methods for finding active objects. Advances in Space Research, 41:1955-1959, 2008.
    • (2008) Advances in Space Research , vol.41 , pp. 1955-1959
    • Zhao, Y.1    Zhang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.