메뉴 건너뛰기




Volumn , Issue , 2011, Pages 212-217

Learning neighborhood cooccurrence statistics of sparse features for human activity recognition

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVITY RECOGNITION; CO-OCCURRENCE; CO-OCCURRENCE STATISTICS; CODE-WORDS; CODEWORD; CONDITIONAL RANDOM FIELD; DATA SETS; HUMAN ACTIVITY RECOGNITION; INTEREST POINTS; LATENT VARIABLE; MAXIMUM LIKELIHOOD LEARNING; NEIGHBORHOOD STRUCTURE; SPATIO-TEMPORAL;

EID: 80053961527     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/AVSS.2011.6027324     Document Type: Conference Paper
Times cited : (17)

References (29)
  • 2
    • 70450196535 scopus 로고    scopus 로고
    • Recognising action as clouds of space-time interest points
    • M. Bregonzio, S. Gong, and T. Xiang. Recognising action as clouds of space-time interest points. In CVPR, 2009.
    • (2009) CVPR
    • Bregonzio, M.1    Gong, S.2    Xiang, T.3
  • 3
    • 33846622081 scopus 로고    scopus 로고
    • Behavior Recognition via Sparse SpatioTemporal Features
    • P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior Recognition via Sparse SpatioTemporal Features. In VSPETS, 2005.
    • (2005) VSPETS
    • Dollar, P.1    Rabaud, V.2    Cottrell, G.3    Belongie, S.4
  • 4
    • 33745123355 scopus 로고    scopus 로고
    • Hybrid Models for Human Motion Recognition
    • C. Fanti, L. Zelnik-Manor, and P. Perona. Hybrid Models for Human Motion Recognition. In CVPR, 2005.
    • (2005) CVPR
    • Fanti, C.1    Zelnik-Manor, L.2    Perona, P.3
  • 5
    • 77953210669 scopus 로고    scopus 로고
    • Fast realistic multi-action recognition using mined dense spatio-temporal features
    • Sept.
    • A. Gilbert, J. Illingworth, and R. Bowden. Fast realistic multi-action recognition using mined dense spatio-temporal features. ICCV, Sept. 2009.
    • (2009) ICCV
    • Gilbert, A.1    Illingworth, J.2    Bowden, R.3
  • 6
    • 50649099025 scopus 로고    scopus 로고
    • A Biologically Inspired System for Action Recognition
    • Oct.
    • H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A Biologically Inspired System for Action Recognition. In ICCV, Oct. 2007.
    • (2007) ICCV
    • Jhuang, H.1    Serre, T.2    Wolf, L.3    Poggio, T.4
  • 7
    • 51949085157 scopus 로고    scopus 로고
    • Learning human actions via information maximization
    • June
    • L. Jingen and M. Shah. Learning human actions via information maximization. In CVPR, June 2008.
    • (2008) CVPR
    • Jingen, L.1    Shah, M.2
  • 8
    • 34948836726 scopus 로고    scopus 로고
    • Spatio-temporal Shape and Flow Correlation for Action Recognition
    • June
    • Y. Ke, R. Sukthankar, and M. Hebert. Spatio-temporal Shape and Flow Correlation for Action Recognition. In CVPR, June 2007.
    • (2007) CVPR
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 9
    • 77955993558 scopus 로고    scopus 로고
    • Learning a Hierarchy of Discriminative Space-Time Neighborhood Features for Human Action Recognition
    • A. Kovashka and K. Grauman. Learning a Hierarchy of Discriminative Space-Time Neighborhood Features for Human Action Recognition. In CVPR, 2010.
    • (2010) CVPR
    • Kovashka, A.1    Grauman, K.2
  • 10
    • 24944451092 scopus 로고    scopus 로고
    • On Space-Time Interest Points
    • I. Laptev. On Space-Time Interest Points. IJCV, 2005.
    • (2005) IJCV
    • Laptev, I.1
  • 12
    • 34948833676 scopus 로고    scopus 로고
    • Single view human action recognition using key pose matching and viterbi path searching
    • F. Lv and R. Nevatia. Single view human action recognition using key pose matching and viterbi path searching. In CVPR, 2007.
    • (2007) CVPR
    • Lv, F.1    Nevatia, R.2
  • 13
    • 77953182943 scopus 로고    scopus 로고
    • Activity recognition using the velocity histories of tracked keypoints
    • Sept.
    • R. Messing, C. Pal, and H. Kautz. Activity recognition using the velocity histories of tracked keypoints. In ICCV, Sept. 2009.
    • (2009) ICCV
    • Messing, R.1    Pal, C.2    Kautz, H.3
  • 14
    • 34948881770 scopus 로고    scopus 로고
    • Latent-Dynamic Discriminative Models for Continuous Gesture Recognition
    • June
    • L.-P. Morency, A. Quattoni, and T. Darrell. Latent-Dynamic Discriminative Models for Continuous Gesture Recognition. In CVPR, June 2007.
    • (2007) CVPR
    • Morency, L.-P.1    Quattoni, A.2    Darrell, T.3
  • 15
    • 34948829111 scopus 로고    scopus 로고
    • A Hierarchical Model of Shape and Appearance for Human Action Classication
    • J. C. Niebles and L. Fei-Fei. A Hierarchical Model of Shape and Appearance for Human Action Classication. In CVPR, 2007.
    • (2007) CVPR
    • Niebles, J.C.1    Fei-Fei, L.2
  • 16
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words
    • Mar.
    • J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words. IJCV, Mar. 2008.
    • (2008) IJCV
    • Niebles, J.C.1    Wang, H.2    Fei-Fei, L.3
  • 18
    • 24644444341 scopus 로고    scopus 로고
    • Automatic annotation of everyday movements
    • D. Ramanan and D. Forsyth. Automatic annotation of everyday movements. In NIPS, 2003.
    • (2003) NIPS
    • Ramanan, D.1    Forsyth, D.2
  • 19
    • 51949084792 scopus 로고    scopus 로고
    • Action Mach A spatiotemporal maximum average correlation height filter for action recognition
    • M. Rodriguez, J. Ahmed, and M. Shah. Action Mach A spatiotemporal maximum average correlation height filter for action recognition. In CVPR, 2008.
    • (2008) CVPR
    • Rodriguez, M.1    Ahmed, J.2    Shah, M.3
  • 20
    • 77953187842 scopus 로고    scopus 로고
    • Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities
    • Sept.
    • M. Ryoo and J. Aggarwal. Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities. In ICCV, Sept. 2009.
    • (2009) ICCV
    • Ryoo, M.1    Aggarwal, J.2
  • 21
    • 51949101597 scopus 로고    scopus 로고
    • Action Snippets: How many frames does human action recognition require?
    • K. Schindler and L. Van Gool. Action Snippets: How many frames does human action recognition require? In CVPR, 2008.
    • (2008) CVPR
    • Schindler, K.1    Van Gool, L.2
  • 22
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local SVM approach
    • C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: a local SVM approach. In ICPR, 2004.
    • (2004) ICPR
    • Schuldt, C.1    Laptev, I.2    Caputo, B.3
  • 23
    • 77953208298 scopus 로고    scopus 로고
    • Selection and context for action recognition
    • C. Sminchisescu. Selection and context for action recognition. In ICCV, 2009.
    • (2009) ICCV
    • Sminchisescu, C.1
  • 24
    • 33745893539 scopus 로고    scopus 로고
    • Conditional models for contextual human motion recognition
    • C. Sminchisescu, A. Kanaujia, Z. Li, and M. Dimitris. Conditional models for contextual human motion recognition. In ICCV, 2005.
    • (2005) ICCV
    • Sminchisescu, C.1    Kanaujia, A.2    Li, Z.3    Dimitris, M.4
  • 25
    • 70450214829 scopus 로고    scopus 로고
    • Hierarchical spatio-temporal context modeling for action recognition
    • J. Sun, X. Wu, S. Yan, L. Cheong, T. Chua, and J. Li. Hierarchical spatio-temporal context modeling for action recognition. In CVPR, 2009.
    • (2009) CVPR
    • Sun, J.1    Wu, X.2    Yan, S.3    Cheong, L.4    Chua, T.5    Li, J.6
  • 27
    • 77953749678 scopus 로고    scopus 로고
    • Learning a discriminative hidden part model for human action recognition
    • Y. Wang and G. Mori. Learning a discriminative hidden part model for human action recognition. In NIPS, 2008.
    • (2008) NIPS
    • Wang, Y.1    Mori, G.2
  • 28
    • 70450216856 scopus 로고    scopus 로고
    • Max-margin hidden conditional random fields for human action recognition
    • June
    • Y.Wang and G. Mori. Max-margin hidden conditional random fields for human action recognition. In CVPR, June 2009.
    • (2009) CVPR
    • Wang, Y.1    Mori, G.2
  • 29
    • 77951961687 scopus 로고    scopus 로고
    • Motion Context: A New Representation for Human Action Recognition
    • Z. Zhang, Y. Hu, S. Chan, and L.-T. Chia. Motion Context : A New Representation for Human Action Recognition. In ECCV, 2008.
    • (2008) ECCV
    • Zhang, Z.1    Hu, Y.2    Chan, S.3    Chia, L.-T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.