메뉴 건너뛰기




Volumn 22, Issue 5, 2011, Pages 805-818

Seeking multi-thresholds for image segmentation with Learning Automata

Author keywords

Automatic thresholding; Expectation Maximization; Gaussian mixture; Gradient methods; Image segmentation; Intelligent image processing; Learning Automata

Indexed keywords

AUTOMATIC THRESHOLDING; EXPECTATION MAXIMIZATION; GAUSSIAN MIXTURES; INTELLIGENT IMAGE PROCESSING; LEARNING AUTOMATA;

EID: 80053929532     PISSN: 09328092     EISSN: 14321769     Source Type: Journal    
DOI: 10.1007/s00138-010-0249-0     Document Type: Article
Times cited : (39)

References (40)
  • 2
    • 0027590053 scopus 로고
    • Extraction of binary character/graphics images from grayscale document images
    • Kamel, M., Zhao, A.: Extraction of binary character/graphics images from grayscale document images. Graph Models Image Process. 55(3), 203-217 (1993).
    • (1993) Graph Models Image Process , vol.55 , Issue.3 , pp. 203-217
    • Kamel, M.1    Zhao, A.2
  • 3
    • 0029547060 scopus 로고
    • Goal-directed evaluation of binarization methods
    • Trier, O.D., Jain, A.K.: Goal-directed evaluation of binarization methods. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1191- 1201 (1995).
    • (1995) IEEE Trans. Pattern Anal. Mach. Intell. , vol.17 , Issue.12 , pp. 1191-1201
    • Trier, O.D.1    Jain, A.K.2
  • 4
    • 0022757287 scopus 로고
    • Automatic target recognition: State of the art survey
    • Bhanu, B.: Automatic target recognition: state of the art survey. IEEE Trans. Aerosp. Electron. Syst. 22, 364-379 (1986).
    • (1986) IEEE Trans. Aerosp. Electron. Syst. , vol.22 , pp. 364-379
    • Bhanu, B.1
  • 5
    • 0035172820 scopus 로고    scopus 로고
    • Comparison of thresholding methods for non-destructive testing applications
    • Sezgin, M., Sankur, B.: Comparison of thresholding methods for non-destructive testing applications. In: IEEE International Conference on Image Processing, pp. 764-767 (2001).
    • (2001) IEEE International Conference on Image Processing , pp. 764-767
    • Sezgin, M.1    Sankur, B.2
  • 6
    • 0033896325 scopus 로고    scopus 로고
    • Anewdichotomization technique to multilevel thresholding devoted to inspection applications
    • Sezgin, M., Tasaltin, R.:Anewdichotomization technique to multilevel thresholding devoted to inspection applications. Pattern Recognit. Lett. 21(2), 151-161 (2000).
    • (2000) Pattern Recognit. Lett. , vol.21 , Issue.2 , pp. 151-161
    • Sezgin, M.1    Tasaltin, R.2
  • 7
    • 0031707177 scopus 로고    scopus 로고
    • Automatic threshold selection based on histogram modes and discriminant criterion
    • Guo, R., Pandit, S.M.: Automatic threshold selection based on histogram modes and discriminant criterion. Mach. Vis. Appl. 10, 331-338 (1998).
    • (1998) Mach. Vis. Appl. , vol.10 , pp. 331-338
    • Guo, R.1    Pandit, S.M.2
  • 8
    • 0027658896 scopus 로고
    • A review on image segmentation techniques
    • Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit. 26, 1277-1294 (1993).
    • (1993) Pattern Recognit , vol.26 , pp. 1277-1294
    • Pal, N.R.1    Pal, S.K.2
  • 11
    • 21744434576 scopus 로고    scopus 로고
    • Seeking multi-thresholds directly from support vectors for image segmentation
    • Chen, S., Wang, M.: Seeking multi-thresholds directly from support vectors for image segmentation. Neurocomputing 67(4), 335-344 (2005).
    • (2005) Neurocomputing , vol.67 , Issue.4 , pp. 335-344
    • Chen, S.1    Wang, M.2
  • 12
    • 32244441533 scopus 로고    scopus 로고
    • A novel image segmentation approach based on particle swarm optimization
    • Chih-Chih, L.: A novel image segmentation approach based on particle swarm optimization. IEICE Trans. Fundam. 89(1), 324- 327 (2006).
    • (2006) IEICE Trans. Fundam. , vol.89 , Issue.1 , pp. 324-327
    • Chih-Chih, L.1
  • 13
    • 16744364395 scopus 로고    scopus 로고
    • Recent developments in mixture models
    • Böhning, D., Seidel, W.: Recent developments in mixture models. Comput. Stat. Data Anal. 41, 349-357 (2003).
    • (2003) Comput. Stat. Data Anal , vol.41 , pp. 349-357
    • Böhning, D.1    Seidel, W.2
  • 14
    • 0032017754 scopus 로고    scopus 로고
    • AGaussian-mixture-based image segmentation algorithm
    • Gupta, L., Sortrakul, T.:AGaussian-mixture-based image segmentation algorithm. Pattern Recognit. 31(3), 315-325 (1998).
    • (1998) Pattern Recognit , vol.31 , Issue.3 , pp. 315-325
    • Gupta, L.1    Sortrakul, T.2
  • 15
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A.P., Laird, A.P., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1-38 (1977).
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, A.P.2    Rubin, D.B.3
  • 16
    • 0038309400 scopus 로고    scopus 로고
    • EM algorithms for Gaussian mixtures with split-and-merge operation
    • Zhang, Z., Chen, C., Sun, J., Chan, L.: EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognit. 36, 1973-1983 (2003).
    • (2003) Pattern Recognit , vol.36 , pp. 1973-1983
    • Zhang, Z.1    Chen, C.2    Sun, J.3    Chan, L.4
  • 17
    • 0034266869 scopus 로고    scopus 로고
    • Adaptive natural gradient learning algorithms for various stochastic models
    • Park, H., Amari, S., Fukumizu, K.: Adaptive natural gradient learning algorithms for various stochastic models. Neural Netw. 13, 755-764 (2000).
    • (2000) Neural Netw , vol.13 , pp. 755-764
    • Park, H.1    Amari, S.2    Fukumizu, K.3
  • 18
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26((2), 195-239 (1984).
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 19
    • 60449094542 scopus 로고    scopus 로고
    • Singularity and slow Convergence of the EM algorithm for Gaussian mixtures
    • Park, H., Ozeki, T.: Singularity and slow Convergence of the EM algorithm for Gaussian mixtures. Neural Process Lett. 29, 45-59 (2009).
    • (2009) Neural Process Lett. , vol.29 , pp. 45-59
    • Park, H.1    Ozeki, T.2
  • 20
    • 0037735771 scopus 로고    scopus 로고
    • Asymptotic convergence rate of the EMalgorithm for Gaussian mixtures
    • Ma, J., Xu, L., Jordan, M.I.: Asymptotic convergence rate of the EMalgorithm for Gaussian mixtures. Neural Comput. 12, 2881- 2907 (2000).
    • (2000) Neural Comput , vol.12 , pp. 2881-2907
    • Ma, J.1    Xu, L.2    Jordan, M.I.3
  • 21
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties for the EM algorithm
    • Xu, L., Jordan, M.I.: On convergence properties for the EM algorithm. Neural Comput. 8, 129-151 (1996).
    • (1996) Neural Comput , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 22
    • 2342533082 scopus 로고    scopus 로고
    • On corvengence of the EM algorithm for Gaussian mixtures
    • Xu, L., Jordan, M.I.: On corvengence of the EM algorithm for Gaussian mixtures. Neural Comput. 8(1), 129-151 (1996).
    • (1996) Neural Comput. , vol.8 , Issue.1 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 23
    • 34247192555 scopus 로고    scopus 로고
    • State-space models: From the EM algorithm to a gradient approach
    • Olsson, R., Petersen, K., Lehn-Schiøler, T.: State-space models: from the EM algorithm to a gradient approach. Neural Comput. 19(4), 1097-1111 (2008).
    • (2008) Neural Comput , vol.19 , Issue.4 , pp. 1097-1111
    • Olsson, R.1    Petersen, K.2    Lehn-Schiøler, T.3
  • 26
    • 35648933903 scopus 로고    scopus 로고
    • Learning automata based classifier
    • Seyed-Hamid, Z.: Learning automata based classifier. Pattern Recognit. Lett. 29, 40-48 (2008).
    • (2008) Pattern Recognit. Lett. , vol.29 , pp. 40-48
    • Seyed-Hamid, Z.1
  • 27
    • 0001085193 scopus 로고    scopus 로고
    • A strategy for controlling nonlinear systems using a learning automaton
    • Zeng, X., Zhou, J., Vasseur, C.: A strategy for controlling nonlinear systems using a learning automaton. Automatica 36, 1517- 1524 (2000).
    • (2000) Automatica , vol.36 , pp. 1517-1524
    • Zeng, X.1    Zhou, J.2    Vasseur, C.3
  • 28
    • 0035493963 scopus 로고    scopus 로고
    • Continuous action reinforcement learning automata and their application to adaptive digital filter design
    • Howell, M., Gordon, T.: Continuous action reinforcement learning automata and their application to adaptive digital filter design. Eng. Appl. Artif. Intell. 14, 549-561 (2001).
    • (2001) Eng. Appl. Artif. Intell. , vol.14 , pp. 549-561
    • Howell, M.1    Gordon, T.2
  • 29
    • 0002011273 scopus 로고
    • Learning coordinated control of power systems using inter-connected learning automata
    • Wu, Q.H.: Learning coordinated control of power systems using inter-connected learning automata. Int. J. Electr. Power Energy Syst. 17, 91-99 (1995).
    • (1995) Int. J. Electr. Power Energy Syst. , vol.17 , pp. 91-99
    • Wu, Q.H.1
  • 31
    • 21244487904 scopus 로고    scopus 로고
    • A learning automaton based algorithm for optimization of continuous complex function
    • Zeng, X., Liu, Z.: A learning automaton based algorithm for optimization of continuous complex function. Inf. Sci. 174, 165-175 (2005).
    • (2005) Inf. Sci. , vol.174 , pp. 165-175
    • Zeng, X.1    Liu, Z.2
  • 32
    • 35648999797 scopus 로고    scopus 로고
    • A new action-set learning automaton for function optimization
    • Beygi, H., Meybodi, M.R.: A new action-set learning automaton for function optimization. Int. J. Franklin Inst. 343, 27-47 (2006).
    • (2006) Int. J. Franklin Inst , vol.343 , pp. 27-47
    • Beygi, H.1    Meybodi, M.R.2
  • 34
    • 0031109409 scopus 로고    scopus 로고
    • Continuous action reinforcement learning applied to vehicle suspension control
    • Howell, M.N., Frost, G.P., Gordon, T.J., Wu, Q.H.: Continuous action reinforcement learning applied to vehicle suspension control. Mechatronics 7(3), 263-276 (1997).
    • (1997) Mechatronics , vol.7 , Issue.3 , pp. 263-276
    • Howell, M.N.1    Frost, G.P.2    Gordon, T.J.3    Wu, Q.H.4
  • 35
    • 0033895635 scopus 로고    scopus 로고
    • On-line PID tuning for engine idlespeed control using continuous action reinforcement learning automata
    • Howell, M.N., Best, M.C.: On-line PID tuning for engine idlespeed control using continuous action reinforcement learning automata. Control Eng. Pract. 8, 147-154 (2000).
    • (2000) Control Eng. Pract. , vol.8 , pp. 147-154
    • Howell, M.N.1    Best, M.C.2
  • 38
    • 56349086420 scopus 로고    scopus 로고
    • Efficient edge detection in digital images using a cellular neural network optimized by differential evolution algorithm
    • Ba̧stürk, A., Günay, E.: Efficient edge detection in digital images using a cellular neural network optimized by differential evolution algorithm. Expert Syst. Appl. 36(8), 2645-2650 (2009).
    • (2009) Expert Syst. Appl. , vol.36 , Issue.8 , pp. 2645-2650
    • Ba̧stürk, A.1    Günay, E.2
  • 39
    • 0035392223 scopus 로고    scopus 로고
    • An optimal L-filter for reducing blocking artifacts using genetic algorithms
    • Lai, C.-C., Tseng, D.-C.: An optimal L-filter for reducing blocking artifacts using genetic algorithms. Signal Process. 81(7), 1525- 1535 (2001).
    • (2001) Signal Process. , vol.81 , Issue.7 , pp. 1525-1535
    • Lai, C.-C.1    Tseng, D.-C.2
  • 40
    • 0033492985 scopus 로고    scopus 로고
    • A genetic algorithm for MRF-based segmentation of multispectral textured images
    • Tseng, D.-C., Lai, C.-C.: A genetic algorithm for MRF-based segmentation of multispectral textured images. Pattern Recognit. Lett. 20(14), 1499-1510 (1999).
    • (1999) Pattern Recognit. Lett. , vol.20 , Issue.14 , pp. 1499-1510
    • Tseng, D.-C.1    Lai, C.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.