-
3
-
-
0002522806
-
When Are quasi-monte carlo algorithms efficient for high dimensional integrals?
-
I. Sloan and H.Wozniakowski, When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals, J. of Complexity, 14 (1998), no. 1, pp. 1-33. (Pubitemid 128421301)
-
(1998)
Journal of Complexity
, vol.14
, Issue.1
, pp. 1-33
-
-
Sloan, I.H.1
Wozniakowski, H.2
-
4
-
-
33144490090
-
Why are high-dimensional finance problems often of low effective dimension?
-
X. Wang and I. Sloan, Why are high-dimensional finance problems often of low effective dimension?, SIAM J. Sci. Comp., 27 (2006), no. 1, pp. 159-183.
-
(2006)
SIAM J. Sci. Comp.
, vol.27
, Issue.1
, pp. 159-183
-
-
Wang, X.1
Sloan, I.2
-
5
-
-
68649096448
-
Tensor decompositions and applications
-
T. G. Kolda and B. W. Bader, Tensor Decompositions and Applications, SIAM Review, 51 (2009), no. 3, pp. 455-500.
-
(2009)
SIAM Review
, vol.51
, Issue.3
, pp. 455-500
-
-
Kolda, T.G.1
Bader, B.W.2
-
6
-
-
0036679114
-
Numerical operator calculus in higher dimensions
-
G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions, Proc. Nat. Acad. Sci. USA, 99 (2002), no. 16, pp. 10246-10251.
-
(2002)
Proc. Nat. Acad. Sci. USA
, vol.99
, Issue.16
, pp. 10246-10251
-
-
Beylkin, G.1
Bader, M.J.2
-
7
-
-
27844496824
-
Algorithms for numerical analysis in high dimensions
-
DOI 10.1137/040604959
-
G. Beylkin and M. J. Mohlenkamp, Algorithms for numerical analysis in high dimensions, SIAM J. Sci. Comput., 26 (2005), no.6, pp. 2133-2159. (Pubitemid 41641365)
-
(2005)
SIAM Journal of Scientific Computing
, vol.26
, Issue.6
, pp. 2133-2159
-
-
Beylkin, G.1
Mohlenkamp, M.J.2
-
8
-
-
34250499792
-
Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition
-
J. D. Caroll and J. J. Chang, Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition, Psychometrika, 35 (1970), pp. 283-319.
-
(1970)
Psychometrika
, vol.35
, pp. 283-319
-
-
Caroll, J.D.1
Chang, J.J.2
-
9
-
-
0002740437
-
Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis
-
R. A. Harshman, Foundations of the Parafac procedure: models and conditions for an explanatory multimodal factor analysis, UCLA Working Papers in Phonetics, 16 1970, pp. 1-84.
-
(1970)
UCLA Working Papers in Phonetics
, vol.16
, pp. 1-84
-
-
Harshman, R.A.1
-
11
-
-
70449525345
-
TT-cross algorithm for the approximation of multidimensional arrays
-
I. V. Oseledets and E. E. Tyrtyshnikov, TT-cross algorithm for the approximation of multidimensional arrays, Linear Algebra Appl., 432 (2010), no. 1., pp. 70-88.
-
(2010)
Linear Algebra Appl.
, vol.432
, Issue.1
, pp. 70-88
-
-
Oseledets, I.V.1
Tyrtyshnikov, E.E.2
-
13
-
-
80053896203
-
Tensor train decomposition
-
I. V. Oseledets, Tensor train decomposition, SIAM J. Sci. Comp, 33 (2011), no. 5, pp. 2295-2317.
-
(2011)
SIAM J. Sci. Comp
, vol.33
, Issue.5
, pp. 2295-2317
-
-
Oseledets, I.V.1
-
14
-
-
4244095121
-
Thermodynamic limit of density matrix renormalization
-
S. Östlund and S. Rommer, Thermodynamic Limit of Density Matrix Renormalization, Phys. Rev. Lett., 75 (1995), no. 19, pp. 3537-3540, http://link.aps.org/doi/10.1103/PhysRevLett.75.3537.
-
(1995)
Phys. Rev. Lett.
, vol.75
, Issue.19
, pp. 3537-3540
-
-
Östlund, S.1
Rommer, S.2
-
15
-
-
20044389808
-
Density-matrix algorithms for quantum renormalization groups
-
S. R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B, 48 (1993), no. 14, pp. 10345-10356.
-
(1993)
Phys. Rev. B
, vol.48
, Issue.14
, pp. 10345-10356
-
-
White, S.R.1
-
16
-
-
80053917258
-
Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDEs
-
B. N. Khoromskij and I. V. Oseledets, Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDEs, Comp Meth. Appl. Math., 10 (2010), no 4, pp. 376-394.
-
(2010)
Comp Meth. Appl. Math.
, vol.10
, Issue.4
, pp. 376-394
-
-
Khoromskij, B.N.1
Oseledets, I.V.2
-
18
-
-
68149178489
-
Linear algebra for tensor problems
-
I. V. Oseledets, D. V. Savostyanov, and E. E. Tyrtyshnikov, Linear algebra for tensor problems, Computing, 85 (2009), no. 3, pp. 169-188.
-
(2009)
Computing
, vol.85
, Issue.3
, pp. 169-188
-
-
Oseledets, I.V.1
Savostyanov, D.V.2
Tyrtyshnikov, E.E.3
-
19
-
-
76349097551
-
Approximate multiplication of tensor matrices based on the individual filtering of factors
-
D. V. Savostyanov and E. E. Tyrtyshnikov, Approximate multiplication of tensor matrices based on the individual filtering of factors, J. Comp. Math. Math. Phys., 49 (2009), no. 10, pp. 1662-1677.
-
(2009)
J. Comp. Math. Math. Phys.
, vol.49
, Issue.10
, pp. 1662-1677
-
-
Savostyanov, D.V.1
Tyrtyshnikov, E.E.2
-
20
-
-
78649684489
-
Fast revealing of mode ranks of tensor in canonical format
-
D. V. Savostyanov, Fast revealing of mode ranks of tensor in canonical format, Numer. Math. Theor. Meth. Appl., 2 (2009), no 4., pp. 439-444.
-
(2009)
Numer. Math. Theor. Meth. Appl.
, vol.2
, Issue.4
, pp. 439-444
-
-
Savostyanov, D.V.1
-
21
-
-
84877011343
-
-
Preprint2010-01,-Moscow: INM RAS, 2010-arXiv:1004
-
S. A. Goreinov, I. V. Oseledets, and D. V. Savostyanov, Wedderburn rank reduction and Krylov subspace method for tensor approximation. Part 1: Tucker case: Preprint 2010-01,-Moscow: INM RAS, 2010-arXiv:1004.1986, http://pub.inm.ras.ru.
-
(1986)
Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case
-
-
Goreinov, S.A.1
Oseledets, I.V.2
Savostyanov, D.V.3
-
23
-
-
84948466347
-
Computation of the Hartree-Fock exchange by tensor-structured methods
-
V. Khoromskaia, Computation of the Hartree-Fock exchange by tensor-structured methods, Comp. Methd. Appl. Math., 10 (2008), no. 2.
-
(2008)
Comp. Methd. Appl. Math.
, vol.10
, Issue.2
-
-
Khoromskaia, V.1
-
24
-
-
84897586218
-
Multigrid accelerated tensor approximation of function related multidimensional arrays
-
B. N. Khoromskij and V. Khoromskaia, Multigrid accelerated tensor approximation of function related multidimensional arrays, SIAM J. Sci. Comp., 31 2009, no. 4., pp. 3002-3026.
-
(2009)
SIAM J. Sci. Comp.
, vol.31
, Issue.4
, pp. 3002-3026
-
-
Khoromskij, B.N.1
Khoromskaia, V.2
-
25
-
-
67649378419
-
Tensor decomposition in electronic structure calculations on 3D Cartesian grids
-
S. R. Chinnamsetty, H. J. Flad, V. Khoromskaia, and B. N. Khoromskij, Tensor decomposition in electronic structure calculations on 3D Cartesian grids, J. Comp. Phys., 228 (2009), no. 16, pp. 5749-5762.
-
(2009)
J. Comp. Phys.
, vol.228
, Issue.16
, pp. 5749-5762
-
-
Chinnamsetty, S.R.1
Flad, H.J.2
Khoromskaia, V.3
Khoromskij, B.N.4
-
27
-
-
79952297523
-
Numerical solution of the Hartree-Fock equation in multilevel tensor-structured format
-
B. N. Khoromskij, V. Khoromskaia, and H.-J. Flad, Numerical solution of the Hartree-Fock equation in multilevel tensor-structured format, SIAM J. Sci. Comp., 33 (2011), no. 1, pp. 45-65.
-
(2011)
SIAM J. Sci. Comp.
, vol.33
, Issue.1
, pp. 45-65
-
-
Khoromskij, B.N.1
Khoromskaia, V.2
Flad, H.-J.3
-
29
-
-
84867299102
-
Solution of linear systems and matrix inversion in the TTformat
-
Preprint 19 Submitted to,-Leipzig: MIS MPI
-
S. V. Dolgov and I. V. Oseledets, Solution of linear systems and matrix inversion in the TTformat: Preprint 19 (Submitted to SIAM J. of Sci. Comp.),-Leipzig: MIS MPI, 2011, http://www.mis.mpg.de/preprints/2011/ preprint2011-19.pdf.
-
(2011)
SIAM J. of Sci. Comp.
-
-
Dolgov, S.V.1
Oseledets, I.V.2
-
30
-
-
79960994573
-
O(d logN)-Quantics approximation of N-d tensors in high-dimensional numerical modeling
-
B. N. Khoromskij, O(d logN)-Quantics approximation of N-d tensors in high-dimensional numerical modeling, Constr. Appr., 2011.
-
(2011)
Constr. Appr.
-
-
Khoromskij, B.N.1
-
32
-
-
77956042755
-
Approximation of 2d × 2d matrices using tensor decomposition
-
I. V. Oseledets, Approximation of 2d × 2d matrices using tensor decomposition, SIAM J. Matrix Anal. Appl., 31 (2010), no. 4, pp. 2130-2145.
-
(2010)
SIAM J. Matrix Anal. Appl.
, vol.31
, Issue.4
, pp. 2130-2145
-
-
Oseledets, I.V.1
|