메뉴 건너뛰기




Volumn 35, Issue 12, 2011, Pages 2741-2749

Analysis of the particle swarm algorithm in the optimization of a three-phase slurry catalytic reactor

Author keywords

Multiphase reactors; Optimization; PSO

Indexed keywords

CATALYTIC REACTOR; CHEMICAL PROCESS; COMPUTATIONAL BURDEN; CONSTRAINED OPTIMIZATION PROBLEMS; DETERMINISTIC METHODS; ENVIRONMENTAL CONSTRAINTS; HIGH RATE OF CONVERGENCE; INPUT VARIABLES; MULTI VARIABLES; MULTI-PHASE REACTOR; O-CRESOL; OBJECTIVE FUNCTIONS; OPERATING CONDITION; OPTIMIZATION GOALS; OPTIMIZATION PROBLEMS; PARTICLE SWARM ALGORITHM; PSO; PSO ALGORITHMS; REAL-TIME APPLICATION; SIMPLIFIED MATHEMATICAL MODEL; THREE-PHASE CATALYTIC SLURRY REACTORS; TUBULAR GEOMETRY;

EID: 80053898845     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2011.06.001     Document Type: Article
Times cited : (10)

References (20)
  • 1
    • 84901421400 scopus 로고    scopus 로고
    • The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization
    • Clerc M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. Proceedings of the ICEC 1999, 1951-1957.
    • (1999) Proceedings of the ICEC , pp. 1951-1957
    • Clerc, M.1
  • 2
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space
    • Clerc M., Kennedy J. The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Transactions on Evolutionary Computation 2002, 6:58-73.
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 4
    • 0033729054 scopus 로고    scopus 로고
    • An efficient constraint handling method for genetic algorithms
    • Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 2000, 186:311-338.
    • (2000) Computer Methods in Applied Mechanics and Engineering , vol.186 , pp. 311-338
    • Deb, K.1
  • 5
    • 0033666935 scopus 로고    scopus 로고
    • Comparing inertia weights and constriction factors in particle swarm optimization
    • Eberhart R.C., Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. Proceedings of the CEC 2000, 84-88.
    • (2000) Proceedings of the CEC , pp. 84-88
    • Eberhart, R.C.1    Shi, Y.2
  • 13
    • 50149112006 scopus 로고    scopus 로고
    • Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design
    • Panda S., Padhy N.P. Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Applied Soft Computing 2008, 8:1418-1427.
    • (2008) Applied Soft Computing , vol.8 , pp. 1418-1427
    • Panda, S.1    Padhy, N.P.2
  • 14
    • 0344291226 scopus 로고    scopus 로고
    • Recent approaches to global optimization problems through particle swarm optimization
    • Parsopoulos K.E., Vrahatis M.N. Recent approaches to global optimization problems through particle swarm optimization. Natural Computing 2002, 1:235-306.
    • (2002) Natural Computing , vol.1 , pp. 235-306
    • Parsopoulos, K.E.1    Vrahatis, M.N.2
  • 18
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: Convergence analysis and parameter selection
    • Trelea I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters 2003, 85:317-325.
    • (2003) Information Processing Letters , vol.85 , pp. 317-325
    • Trelea, I.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.