메뉴 건너뛰기




Volumn 13, Issue 9, 2011, Pages 1708-1729

An artificial bee colony algorithm for the job shop scheduling problem with random processing times

Author keywords

Artificial bee colony algorithm; Maximum lateness; Shop scheduling; Simulation

Indexed keywords


EID: 80053598579     PISSN: None     EISSN: 10994300     Source Type: Journal    
DOI: 10.3390/e13091708     Document Type: Article
Times cited : (41)

References (41)
  • 2
    • 40249118429 scopus 로고    scopus 로고
    • A genetic algorithm for the flexible job-shop scheduling problem
    • Pezzella, F.; Morganti, G.; Ciaschetti, G. A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res. 2008, 35, 3202-3212.
    • (2008) Comput. Oper. Res. , vol.35 , pp. 3202-3212
    • Pezzella, F.1    Morganti, G.2    Ciaschetti, G.3
  • 3
    • 79960833764 scopus 로고    scopus 로고
    • EA/G-GA for single machine scheduling problems with earliness/tardiness costs
    • Chen, S.H.; Chen, M.C.; Chang, P.C.; Chen, Y.M. EA/G-GA for single machine scheduling problems with earliness/tardiness costs. Entropy 2011, 13, 1152-1169.
    • (2011) Entropy , vol.13 , pp. 1152-1169
    • Chen, S.H.1    Chen, M.C.2    Chang, P.C.3    Chen, Y.M.4
  • 4
    • 17444396374 scopus 로고    scopus 로고
    • An advanced tabu search algorithm for the job shop problem
    • Nowicki, E.; Smutnicki, C. An advanced tabu search algorithm for the job shop problem. J. Sched. 2005, 8, 145-159.
    • (2005) J. Sched. , vol.8 , pp. 145-159
    • Nowicki, E.1    Smutnicki, C.2
  • 5
    • 43249130971 scopus 로고    scopus 로고
    • Pareto archive particle swarm optimization for multi-objective fuzzy job shop scheduling problems
    • Lei, D. Pareto archive particle swarm optimization for multi-objective fuzzy job shop scheduling problems. Int. J. Adv. Manuf. Technol. 2008, 37, 157-165.
    • (2008) Int. J. Adv. Manuf. Technol. , vol.37 , pp. 157-165
    • Lei, D.1
  • 6
    • 34247624966 scopus 로고    scopus 로고
    • Flexible job-shop scheduling with routing flexibility and separable setup times using ant colony optimisation method
    • Rossi, A.; Dini, G. Flexible job-shop scheduling with routing flexibility and separable setup times using ant colony optimisation method. Robot. Comput. Integr. Manuf. 2007, 23, 503-516.
    • (2007) Robot. Comput. Integr. Manuf. , vol.23 , pp. 503-516
    • Rossi, A.1    Dini, G.2
  • 7
    • 79955151846 scopus 로고    scopus 로고
    • A hybrid artificial bee colony algorithm for flexible job shop scheduling problems
    • Li, J.; Pan, Q.; Xie, S.; Wang, S. A hybrid artificial bee colony algorithm for flexible job shop scheduling problems. Int. J. Comput. Commun. Control 2011, 6, 286-296.
    • (2011) Int. J. Comput. Commun. Control , vol.6 , pp. 286-296
    • Li, J.1    Pan, Q.2    Xie, S.3    Wang, S.4
  • 8
    • 30044444490 scopus 로고    scopus 로고
    • A genetic algorithm approach to solving stochastic job-shop scheduling problems
    • Yoshitomi, Y. A genetic algorithm approach to solving stochastic job-shop scheduling problems. Int. Trans. Oper. Res. 2002, 9, 479-495.
    • (2002) Int. Trans. Oper. Res. , vol.9 , pp. 479-495
    • Yoshitomi, Y.1
  • 9
    • 45949107758 scopus 로고    scopus 로고
    • A genetic algorithm and the Monte Carlo method for stochastic job-shop scheduling
    • Yoshitomi, Y.; Yamaguchi, R. A genetic algorithm and the Monte Carlo method for stochastic job-shop scheduling. Int. Trans. Oper. Res. 2003, 10, 577-596.
    • (2003) Int. Trans. Oper. Res. , vol.10 , pp. 577-596
    • Yoshitomi, Y.1    Yamaguchi, R.2
  • 10
    • 0037149316 scopus 로고    scopus 로고
    • Optimal job-shop scheduling with random operations and cost objectives
    • Golenko-Ginzburg, D.; Gonik, A. Optimal job-shop scheduling with random operations and cost objectives. Int. J. Prod. Econ. 2002, 76, 147-157.
    • (2002) Int. J. Prod. Econ. , vol.76 , pp. 147-157
    • Golenko-Ginzburg, D.1    Gonik, A.2
  • 12
    • 0032654876 scopus 로고    scopus 로고
    • An effective approach for job-shop scheduling with uncertain processing requirements
    • Luh, P.; Chen, D.; Thakur, L. An effective approach for job-shop scheduling with uncertain processing requirements. IEEE Trans. Robot. Autom. 1999, 15, 328-339.
    • (1999) IEEE Trans. Robot. Autom. , vol.15 , pp. 328-339
    • Luh, P.1    Chen, D.2    Thakur, L.3
  • 13
    • 3343003730 scopus 로고    scopus 로고
    • Mean flow time minimization with given bounds of processing times
    • Lai, T.; Sotskov, Y.; Sotskova, N.; Werner, F. Mean flow time minimization with given bounds of processing times. Eur. J. Oper. Res. 2004, 159, 558-573.
    • (2004) Eur. J. Oper. Res. , vol.159 , pp. 558-573
    • Lai, T.1    Sotskov, Y.2    Sotskova, N.3    Werner, F.4
  • 14
    • 0034668364 scopus 로고    scopus 로고
    • Forecasting policies for scheduling a stochastic due date job shop
    • Singer, M. Forecasting policies for scheduling a stochastic due date job shop. Int. J. Prod. Res. 2000, 38, 3623-3637.
    • (2000) Int. J. Prod. Res. , vol.38 , pp. 3623-3637
    • Singer, M.1
  • 15
    • 79961021759 scopus 로고    scopus 로고
    • Scheduling stochastic job shop subject to random breakdown to minimize makespan
    • Lei, D. Scheduling stochastic job shop subject to random breakdown to minimize makespan. Int. J. Adv. Manuf. Technol. 2011, 55, 1183-1192.
    • (2011) Int. J. Adv. Manuf. Technol. , vol.55 , pp. 1183-1192
    • Lei, D.1
  • 16
    • 80053573501 scopus 로고    scopus 로고
    • Simplified multi-objective genetic algorithms for stochastic job shop scheduling
    • doi:10.1016/j.asoc.2011.06.001
    • Lei, D. Simplified multi-objective genetic algorithms for stochastic job shop scheduling. Appl. Soft Comput. 2011, doi:10.1016/j.asoc.2011.06.001.
    • (2011) Appl. Soft Comput.
    • Lei, D.1
  • 17
    • 60749118275 scopus 로고    scopus 로고
    • A novel parallel quantum genetic algorithm for stochastic job shop scheduling
    • Gu, J.; Gu, X.; Gu, M. A novel parallel quantum genetic algorithm for stochastic job shop scheduling. J. Math. Anal. Appl. 2009, 355, 63-81.
    • (2009) J. Math. Anal. Appl. , vol.355 , pp. 63-81
    • Gu, J.1    Gu, X.2    Gu, M.3
  • 18
    • 70350621618 scopus 로고    scopus 로고
    • A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem
    • Gu, J.; Gu, M.; Cao, C.; Gu, X. A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem. Comput. Oper. Res. 2010, 37, 927-937.
    • (2010) Comput. Oper. Res. , vol.37 , pp. 927-937
    • Gu, J.1    Gu, M.2    Cao, C.3    Gu, X.4
  • 19
    • 77950298803 scopus 로고    scopus 로고
    • Development of a simulation-based decision support system for controlling stochastic flexible job shop manufacturing systems
    • Mahdavi, I.; Shirazi, B.; Solimanpur, M. Development of a simulation-based decision support system for controlling stochastic flexible job shop manufacturing systems. Simul. Model. Pract. Theory 2010, 18, 768-786.
    • (2010) Simul. Model. Pract. Theory , vol.18 , pp. 768-786
    • Mahdavi, I.1    Shirazi, B.2    Solimanpur, M.3
  • 20
    • 80053615218 scopus 로고    scopus 로고
    • A hybrid computer simulation-artificial neural network algorithm for optimisation of dispatching rule selection in stochastic job shop scheduling problems
    • doi:10.1080/00207543.2010.539281
    • Azadeh, A.; Negahban, A.; Moghaddam, M. A hybrid computer simulation-artificial neural network algorithm for optimisation of dispatching rule selection in stochastic job shop scheduling problems. Int. J. Prod. Res. 2011, doi:10.1080/00207543.2010.539281.
    • (2011) Int. J. Prod. Res.
    • Azadeh, A.1    Negahban, A.2    Moghaddam, M.3
  • 21
    • 67349194941 scopus 로고    scopus 로고
    • A survey on metaheuristics for stochastic combinatorial optimization
    • Bianchi, L.; Dorigo, M.; Gambardella, L.; Gutjahr, W. A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput. 2009, 8, 239-287.
    • (2009) Nat. Comput. , vol.8 , pp. 239-287
    • Bianchi, L.1    Dorigo, M.2    Gambardella, L.3    Gutjahr, W.4
  • 22
    • 75149134664 scopus 로고    scopus 로고
    • A survey: algorithms simulating bee swarm intelligence
    • Karaboga, D.; Akay, B. A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 2009, 31, 61-85.
    • (2009) Artif. Intell. Rev. , vol.31 , pp. 61-85
    • Karaboga, D.1    Akay, B.2
  • 23
    • 35148827874 scopus 로고    scopus 로고
    • Technical Report for Computer Engineering Department, Erciyes University, Kayseri, Turkey, October
    • Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report for Computer Engineering Department, Erciyes University, Kayseri, Turkey, October 2005.
    • (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization
    • Karaboga, D.1
  • 24
    • 34548479029 scopus 로고    scopus 로고
    • On the performance of artificial bee colony (ABC) algorithm
    • Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687-697.
    • (2008) Appl. Soft Comput. , vol.8 , pp. 687-697
    • Karaboga, D.1    Basturk, B.2
  • 25
    • 67349273050 scopus 로고    scopus 로고
    • A comparative study of artificial bee colony algorithm
    • Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009, 214, 108-132.
    • (2009) Appl. Math. Comput. , vol.214 , pp. 108-132
    • Karaboga, D.1    Akay, B.2
  • 26
    • 35148821762 scopus 로고    scopus 로고
    • A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
    • Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459-471.
    • (2007) J. Glob. Optim. , vol.39 , pp. 459-471
    • Karaboga, D.1    Basturk, B.2
  • 27
    • 67349287577 scopus 로고    scopus 로고
    • Structural inverse analysis by hybrid simplex artificial bee colony algorithms
    • Kang, F.; Li, J.; Xu, Q. Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput. Struct. 2009, 87, 861-870.
    • (2009) Comput. Struct. , vol.87 , pp. 861-870
    • Kang, F.1    Li, J.2    Xu, Q.3
  • 28
    • 79551689977 scopus 로고    scopus 로고
    • Discrete optimum design of truss structures using artificial bee colony algorithm
    • Sonmez, M. Discrete optimum design of truss structures using artificial bee colony algorithm. Struct. Multidiscip. Optim. 2011, 43, 85-97.
    • (2011) Struct. Multidiscip. Optim. , vol.43 , pp. 85-97
    • Sonmez, M.1
  • 29
    • 79959981089 scopus 로고    scopus 로고
    • Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm
    • Samanta, S.; Chakraborty, S. Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng. Appl. Artif. Intell. 2011, 24, 946-957.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , pp. 946-957
    • Samanta, S.1    Chakraborty, S.2
  • 30
    • 79151472736 scopus 로고    scopus 로고
    • A new bee colony optimization algorithm with idle-time-based filtering scheme for open shop-scheduling problems
    • Huang, Y.; Lin, J. A new bee colony optimization algorithm with idle-time-based filtering scheme for open shop-scheduling problems. Expert Syst. Appl. 2011, 38, 5438-5447.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 5438-5447
    • Huang, Y.1    Lin, J.2
  • 31
    • 0033102020 scopus 로고    scopus 로고
    • Deterministic job-shop scheduling: past, present and future
    • Jain, A.S.; Meeran, S. Deterministic job-shop scheduling: past, present and future. Eur. J. Oper. Res. 1999, 113, 390-434.
    • (1999) Eur. J. Oper. Res. , vol.113 , pp. 390-434
    • Jain, A.S.1    Meeran, S.2
  • 32
    • 84856015723 scopus 로고    scopus 로고
    • For the convenience of expression, we will write σ as a matrix. The k-th row of σ represents the processing order of the operations on machine k
    • In the rest of the paper, we do not distinguish betweenσand the schedule. For the convenience of expression, we will writeσas a matrix. The k-th row of σ represents the processing order of the operations on machine k.
    • In the rest of the paper, we do not distinguish between σ and the schedule
  • 33
    • 84865224703 scopus 로고    scopus 로고
    • Artificial bee colony algorithm for large-scale problems and engineering design optimization
    • doi:10.1007/s10845-010-0393-4
    • Akay, B.; Karaboga, D. Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell. Manuf. 2011, doi:10.1007/s10845-010-0393-4.
    • (2011) J. Intell. Manuf.
    • Akay, B.1    Karaboga, D.2
  • 34
    • 80053610740 scopus 로고    scopus 로고
    • An operation is schedulable if its immediate job predecessor has already been scheduled or if it is the first operation of a certain job
    • An operation is schedulable if its immediate job predecessor has already been scheduled or if it is the first operation of a certain job.
  • 35
    • 0023399009 scopus 로고
    • Priority rules for job shops with weighted tardy costs
    • Vepsalainen, A.P.; Morton, T.E. Priority rules for job shops with weighted tardy costs. Manag. Sci. 1987, 33, 1035-1047.
    • (1987) Manag. Sci. , vol.33 , pp. 1035-1047
    • Vepsalainen, A.P.1    Morton, T.E.2
  • 36
    • 80053605568 scopus 로고    scopus 로고
    • A sequence of operations in the critical path is called a block if (1) it contains at least two operations and (2) the sequence includes a maximum number of operations that are consecutively processed by the same machine [37]
    • A sequence of operations in the critical path is called a block if (1) it contains at least two operations and (2) the sequence includes a maximum number of operations that are consecutively processed by the same machine [37].
  • 38
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • Auer, P.; Cesa-Bianchi, N.; Fischer, P. Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 2002, 47, 235-256.
    • (2002) Mach. Learn. , vol.47 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 39
    • 80053600055 scopus 로고    scopus 로고
    • If a newly-generated solution does not pass the pre-screening test, then simply generate another solution from the neighborhood, and so on
    • If a newly-generated solution does not pass the pre-screening test, then simply generate another solution from the neighborhood, and so on.
  • 40
    • 33646827839 scopus 로고    scopus 로고
    • Hybrid Particle Swarm Optimization for Flow Shop Scheduling with Stochastic Processing Time
    • Springer: Berlin, Heidelberg, Germany
    • Liu, B.;Wang, L.; Jin, Y.H. Hybrid Particle Swarm Optimization for Flow Shop Scheduling with Stochastic Processing Time. In Lecture Notes in Computer Science; Springer: Berlin, Heidelberg, Germany, 2005; Volume 3801, pp. 630-637.
    • (2005) Lecture Notes in Computer Science , vol.3801 , pp. 630-637
    • Liu, B.1    Wang, L.2    Jin, Y.H.3
  • 41
    • 80053607785 scopus 로고    scopus 로고
    • The mean value resulted from 1000 simulation replications (which is large enough for the considered test instances) is regarded as the exact evaluation of a solution
    • The mean value resulted from 1000 simulation replications (which is large enough for the considered test instances) is regarded as the exact evaluation of a solution.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.