메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 2461-2488

Distance dependent Chinese restaurant processes

Author keywords

Bayesian nonparametrics; Chinese restaurant processes

Indexed keywords

BAYESIAN NONPARAMETRICS; CHINESE RESTAURANT PROCESSES; CLASS OF DISTRIBUTIONS; CLUSTERING MODEL; EMPIRICAL PERFORMANCE; GIBBS SAMPLERS; GIBBS SAMPLING; MIXTURE MODEL; NETWORK CONNECTIVITY; NETWORK DATA; NON-PARAMETRIC; SEQUENTIAL DATA; TEXT CORPORA;

EID: 80053537814     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (292)

References (40)
  • 1
    • 52649163923 scopus 로고    scopus 로고
    • Dynamic non-parametric mixture models and the recurrent Chinese restaurant process with applications to evolutionary clustering
    • A. Ahmed and E. Xing. Dynamic non-parametric mixture models and the recurrent Chinese restaurant process with applications to evolutionary clustering. In International Conference on Data Mining, 2008.
    • (2008) International Conference on Data Mining
    • Ahmed, A.1    Xing, E.2
  • 2
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • C. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, 2(6):1152-1174, 1974.
    • (1974) The Annals of Statistics , vol.2 , Issue.6 , pp. 1152-1174
    • Antoniak, C.1
  • 3
    • 0001203039 scopus 로고
    • Discreteness of Ferguson selections
    • D. Blackwell. Discreteness of Ferguson selections. The Annals of Statistics, 1(2):356-358, 1973.
    • (1973) The Annals of Statistics , vol.1 , Issue.2 , pp. 356-358
    • Blackwell, D.1
  • 5
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for Dirichlet process mixtures
    • D. Blei and M. Jordan. Variational inference for Dirichlet process mixtures. Journal of Bayesian Analysis, 1(1):121-144, 2005.
    • (2005) Journal of Bayesian Analysis , vol.1 , Issue.1 , pp. 121-144
    • Blei, D.1    Jordan, M.2
  • 6
    • 76849117578 scopus 로고    scopus 로고
    • The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies
    • D. Blei, T. Griff ths, and M. Jordan. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57(2):1-30, 2010.
    • (2010) Journal of the ACM , vol.57 , Issue.2 , pp. 1-30
    • Blei, D.1    Ths, T.G.2    Jordan, M.3
  • 8
    • 34547988361 scopus 로고    scopus 로고
    • Fast search for Dirichlet process mixture models
    • San Juan, Puerto Rico, URL
    • H. Daume. Fast search for Dirichlet process mixture models. In Artificial Intelligence and Statistics, San Juan, Puerto Rico, 2007. URL http://pub.hal3.name/#daume07astar-dp.
    • (2007) Artificial Intelligence and Statistics
    • Daume, H.1
  • 9
    • 37549057387 scopus 로고    scopus 로고
    • Generalized spatial Dirichlet process models
    • J. Duan, M. Guindani, and A. Gelfand. Generalized spatial Dirichlet process models. Biometrika, 94:809-825, 2007.
    • (2007) Biometrika , vol.94 , pp. 809-825
    • Duan, J.1    Guindani, M.2    Gelfand, A.3
  • 10
    • 33749617419 scopus 로고    scopus 로고
    • Bayesian dynamic modeling of latent trait distributions
    • D. Dunson. Bayesian dynamic modeling of latent trait distributions. Biostatistics, 2006.
    • (2006) Biostatistics
    • Dunson, D.1
  • 13
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • T. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1:209-230, 1973.
    • (1973) The Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.1
  • 14
    • 67049152440 scopus 로고    scopus 로고
    • Developing a tempered HDP-HMM for systems with state persistence
    • MIT Laboratory for Information and Decision Systems
    • E. Fox, E. Sudderth, M. Jordan, and A. Willsky. Developing a tempered HDP-HMM for systems with state persistence. Technical report, MIT Laboratory for Information and Decision Systems, 2007.
    • (2007) Technical Report
    • Fox, E.1    Sudderth, E.2    Jordan, M.3    Willsky, A.4
  • 19
    • 67349214856 scopus 로고    scopus 로고
    • Adaptor grammars: A framework for specifying compositional nonparametric Bayesian models
    • B. Schölkopf, J. Platt, and T. Hoffman, editors, Cambridge, MA, MIT Press
    • M. Johnson, T. Griffths, and Goldwater S. Adaptor grammars: A framework for specifying compositional nonparametric Bayesian models. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 641-648, Cambridge, MA, 2007. MIT Press.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 641-648
    • Johnson, M.1    Griffths, T.2    Goldwater, S.3
  • 25
    • 78650259686 scopus 로고    scopus 로고
    • The phylogenetic indian buffet process: A nonexchangeable nonparametric prior for latent features
    • David A. McAllester and Petri Myllymäki, editors, AUAI Press
    • K. T. Miller, T. L. Griffiths, and M. I. Jordan. The phylogenetic indian buffet process: A nonexchangeable nonparametric prior for latent features. In David A. McAllester and Petri Myllymäki, editors, UAI, pages 403-410. AUAI Press, 2008.
    • (2008) UAI , pp. 403-410
    • Miller, K.T.1    Griffiths, T.L.2    Jordan, M.I.3
  • 28
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • Department of Computer Science, University of Toronto
    • R. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.
    • (1993) Technical Report CRG-TR-93-1
    • Neal, R.1
  • 29
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • R. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9(2):249-265, 2000.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , Issue.2 , pp. 249-265
    • Neal, R.1
  • 30
    • 0242641721 scopus 로고    scopus 로고
    • Lecture Notes for St. Flour Summer School. Springer-Verlag, New York, NY
    • J. Pitman. Combinatorial Stochastic Processes. Lecture Notes for St. Flour Summer School. Springer-Verlag, New York, NY, 2002.
    • (2002) Combinatorial Stochastic Processes
    • Pitman, J.1
  • 31
    • 84896062664 scopus 로고    scopus 로고
    • Infnite mixtures of Gaussian process experts
    • T. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA, MIT Press
    • C. Rasmussen and Z. Ghahramani. Infnite mixtures of Gaussian process experts. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Rasmussen, C.1    Ghahramani, Z.2
  • 32
    • 0000940729 scopus 로고
    • Facilitating the Gibbs sampler: The Gibbs stopper and the Griddy-Gibbs sampler
    • C. Ritter and M. Tanner. Facilitating the Gibbs sampler: The Gibbs stopper and the Griddy-Gibbs sampler. Journal of the American Statistical Association, 87(419):861-868, 1992.
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.419 , pp. 861-868
    • Ritter, C.1    Tanner, M.2
  • 35
    • 72149090968 scopus 로고    scopus 로고
    • Shared segmentation of natural scenes using dependent pitman-yor processes
    • Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, MIT Press
    • E. B. Sudderth and M. I. Jordan. Shared segmentation of natural scenes using dependent pitman-yor processes. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, NIPS, pages 1585-1592. MIT Press, 2008.
    • (2008) NIPS , pp. 1585-1592
    • Sudderth, E.B.1    Jordan, M.I.2
  • 38
    • 34248381219 scopus 로고    scopus 로고
    • Bayesian haplotype inference via the dirichlet process
    • DOI 10.1089/cmb.2006.0102
    • E. Xing, M. Jordan, and R. Sharan. Bayesian haplotype inference via the Dirichlet process. Journal of Computational Biology, 14(3):267-284, 2007. (Pubitemid 46742185)
    • (2007) Journal of Computational Biology , vol.14 , Issue.3 , pp. 267-284
    • Xing, E.P.1    Jordan, M.I.2    Sharan, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.