-
1
-
-
0004055894
-
-
Cambridge University Press, New York, NY, USA
-
Boyd, S. and vandenberghe, L. Convex Optimization. Cambridge University Press, New York, NY, USA, 2004.
-
(2004)
Convex Optimization
-
-
Boyd, S.1
Vandenberghe, L.2
-
2
-
-
77953344311
-
-
PhD thesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
-
Bradley, D. M. Learning in Modular Systems. PhD thesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA, 2009.
-
(2009)
Learning in Modular Systems
-
-
Bradley, D.M.1
-
3
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
March
-
Crammer, K. and Singer, Y. On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res., 2:265-292, March 2002.
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
6
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, 55(1):119-139, 1997. (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
7
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res., 4:933-969, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
8
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J. H. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189-1232, 2000. (Pubitemid 33405972)
-
(2001)
Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
10
-
-
33746081666
-
Logarithmic regret algorithms for online convex optimization
-
Hazan, E., Kalai, A., Kale, S., and Agarwal, A. Logarithmic regret algorithms for online convex optimization. In Proceedings of the 19th Annual Conference on Learning Theory, pp. 499-513, 2006.
-
(2006)
Proceedings of the 19th Annual Conference on Learning Theory
, pp. 499-513
-
-
Hazan, E.1
Kalai, A.2
Kale, S.3
Agarwal, A.4
-
11
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
MIT Press
-
Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. Functional gradient techniques for combining hypotheses. In Advances in Large Margin Classifiers. MIT Press, 1999.
-
(1999)
Advances in Large Margin Classifiers
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.4
-
12
-
-
85162059054
-
A theory of multiclass boosting
-
Cambridge, MA, MIT Press
-
Mukherjee, I. and Schapire, R. E. A theory of multiclass boosting. In Advances in Neural Information Processing Systems 22, Cambridge, MA, 2010. MIT Press.
-
(2010)
Advances in Neural Information Processing Systems
, vol.22
-
-
Mukherjee, I.1
Schapire, R.E.2
-
13
-
-
77954071237
-
-
PhD thesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
-
Ratliff, N. Learning to Search: Structured Prediction Techniques for Imitation Learning. PhD thesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA, 2009.
-
(2009)
Learning to Search: Structured Prediction Techniques for Imitation Learning
-
-
Ratliff, N.1
-
14
-
-
67650957592
-
Learning to search: Functional gradient techniques for imitation learning
-
July
-
Ratliff, N., Silver, D., and Bagnell, J. A. Learning to search: Functional gradient techniques for imitation learning. Autonomous Robots, 27(1):25-53, July 2009.
-
(2009)
Autonomous Robots
, vol.27
, Issue.1
, pp. 25-53
-
-
Ratliff, N.1
Silver, D.2
Bagnell, J.A.3
-
16
-
-
71149113553
-
A simpler unified analysis of budget perceptrons
-
New York, NY, USA, ACM
-
Sutskever, I. A simpler unified analysis of budget perceptrons. In Proceedings of the 26th Annual International Conference on Machine Learning, pp. 985-992, New York, NY, USA, 2009. ACM.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 985-992
-
-
Sutskever, I.1
-
17
-
-
85161963897
-
A general boosting method and its application to learning ranking functions for web search
-
Cambridge, MA, MIT Press
-
Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., and Sun, G. A general boosting method and its application to learning ranking functions for web search. In Advances in Neural Information Processing Systems 19, Cambridge, MA, 2007. MIT Press.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
-
-
Zheng, Z.1
Zha, H.2
Zhang, T.3
Chapelle, O.4
Chen, K.5
Sun, G.6
|