-
2
-
-
10744224005
-
Lone pair interactions with coinage metal atoms: Weak van der Waals complexes of the coinage metal atoms with water and ammonia
-
A. Antušek, M. Urban, and A.J. Sadlej, Lone pair interactions with coinage metal atoms: weak van der Waals complexes of the coinage metal atoms with water and ammonia. J. Chem. Phys. 119, 7247–7262, 2003.
-
(2003)
J. Chem. Phys.
, vol.119
, pp. 7247-7262
-
-
Antušek, A.1
Urban, M.2
Sadlej, A.J.3
-
3
-
-
85129172540
-
-
+(L = H2O, CO, NH3, C3H6, C4H6, C6H6, C6F6). Organometallics 14, 312–316, 1995; (d) R. Armunanto, C.F. Schwenk, and B.M. Rode, Gold (I) in liquid ammonia: ab initio QM/MM molecular dynamics simulation. J. Am. Chem. Soc. 126, 9934–9935, 2004.
-
-
-
Hrušák, J.1
Hertwig, R.H.2
Schröder, D.3
Schwerdtfeger, P.4
Koch, W.5
Schwarz, H.6
Hertwig, T.H.7
Hrušák, J.8
Schröder, D.9
Koch, W.10
Schwarz, H.11
Schröder, D.12
Hrušák, J.13
Hertwig, R.H.14
Koch, W.15
Schwerdtfeger, P.16
Schwarz, H.17
Armunanto, R.18
Schwenk, C.F.19
Rode, B.M.20
more..
-
4
-
-
6344278736
-
Explanation of the anomalous complexation of silver (I) with ammonia in terms of the poor affinity of the ion for water
-
M. Antolovich, L.F. Lindoy, and J.R. Reimers, Explanation of the anomalous complexation of silver (I) with ammonia in terms of the poor affinity of the ion for water. J. Phys. Chem. A 108, 8434–8438, 2004.
-
(2004)
J. Phys. Chem. A
, vol.108
, pp. 8434-8438
-
-
Antolovich, M.1
Lindoy, L.F.2
Reimers, J.R.3
-
5
-
-
0037015755
-
+, and Pt) complexes
-
+, and Pt) complexes. J. Phys. Chem. A 106, 9042–9052, 2002.
-
(2002)
J. Phys. Chem. A
, vol.106
, pp. 9042-9052
-
-
Wu, D.-Y.1
Ren, B.2
Jiang, Y.-X.3
Xu, X.4
Tian, Z.-Q.5
-
7
-
-
85129162026
-
Theoretical chemistry of gold I
-
(a) P. Pyykkö, Theoretical chemistry of gold I. Angew.Chem.Int.Ed.43, 4412–4456, 2004;
-
Angew.Chem.Int.Ed.43
, vol.4412-4456
, pp. 2004
-
-
Pyykkö, P.1
-
8
-
-
85129159495
-
-
2+). J. Phys. Chem. 100, 7250–7255, 1996; (b) J. Šponer, M. Sabat, J.V. Burda, J. Leszcynski, P. Hobza, and B. Lippert, Metal ions in non-complementary DNA base pairs: ab-initio study of Cu (I), Ag (I), and Au (I) complexes with the cytosine-adenine base pair. J. Biol. Inorg. Chem. 4, 537–545, 1999.
-
-
-
Pyykkö, P.1
Burda, J.V.2
Šponer, J.3
Hobza, P.4
Šponer, J.5
Sabat, M.6
Burda, J.V.7
Leszcynski, J.8
Hobza, P.9
Lippert, B.10
-
9
-
-
0037157314
-
Adsorption of ammonia on the gold (111) surface
-
A. Billić, J.R. Reimers, N.S. Hush, and J. Hafner, Adsorption of ammonia on the gold (111) surface. J. Chem. Phys. 116, 8981–8987, 2002.
-
(2002)
J. Chem. Phys.
, vol.116
, pp. 8981-8987
-
-
Billić, A.1
Reimers, J.R.2
Hush, N.S.3
Hafner, J.4
-
10
-
-
85129194531
-
-
(a) S.M. Hou, J.X. Zhang, R. Li, J. Ning, R.S. Han, Z.Y. Shen, X.Y. Zhao, Z.Q. Xue, and Q. Wu, First-principles calculation of the conductance of a single 4,4 bipyridine molecule. Nanotechnology 16, 239–244, 2005; (b) R. Stadler, K.S. Thygesen, and K.W. Jacobsen, Forces and conductance in a single-molecule bipyridine junction. Phys.Rev.B72, 241401(R)-1 – 241401-4, 2005.
-
-
-
Hou, S.M.1
Zhang, J.X.2
Li, R.3
Ning, J.4
Han, R.S.5
Shen, Z.Y.6
Zhao, X.Y.7
Xue, Z.Q.8
Wu, Q.9
Stadler, R.10
Thygesen, K.S.11
Jacobsen, K.W.12
-
11
-
-
85129218970
-
-
(a) B. Xu, X. Xiao, N.J. Tao, Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165, 2003. (b) P. Vélez, S.A. Dassie, and E.P.M. Leiva, First principles calculations of mechanical properties of 4,4(‘)-bipyridine attached to Au nanowires. Phys. Rev. Lett. 95, 045503-1 – 045503-4, 2005.
-
-
-
Xu, B.1
Xiao, X.2
Tao, N.J.3
Vélez, P.4
Dassie, S.A.5
Leiva, E.P.M.6
-
12
-
-
85129139919
-
Assessment of 4-(dimethylamino)pyridine as a capping agent for gold nanoparticles
-
(a) D.I. Gittins and F. Caruso, Spontaneous phase transfer of nanoparticule metals from organic to aqueous media. Angew. Chem. Int. Ed. 40, 3001–3004, 2001; (b) V.J. Gandubert and R.B. Lennox, Assessment of 4-(dimethylamino)pyridine as a capping agent for gold nanoparticles. Langmuir 21, 6532–6539, 2005.
-
Langmuir 21
, vol.6532-6539
, pp. 2005
-
-
-
13
-
-
85129223565
-
-
2− dianion from its Coulomb explosion products. Int. J. Mass Spectr. 244, 144–147, 2005; (b) P. Braunstein, C. Frison, N. Oberbeckmann-Winter, X. Morise, A. Messaoudi, M. Bénard, M.-M. Rohmer, and R. Welter, An oriented 1D coordination/organometallic dimetallic molecular wire with Ag-Pd metal-metal bonds. Angew.Chem.Int.Ed.43, 6120–6125, 2004; (c) S. Fukuzumi, K. Ohkubo, W.E.Z. Ou, J. Shao, K.M. Kadish, J.A. Hutchison, K.P. Ghiggino, P.J. Sintic, and M.J. Crossley, Metal-centered photoinduced electron transfer reduction of a gold (III) porphyrin cation linked with a zinc porphyrin to produce a long-lived charge-separated state in nonpolar solvents. J. Am. Chem. Soc. 125, 14984–14985, 2003; (d) X. Ding, Z. Li, J. Yang, J.G. Hou, and Q. Zhu, Theoretical study of nitric oxide adsorption on Au clusters. J. Chem. Phys. 121, 2558–2562, 2004; A. Fielicke, G.v. Helden, G. Meijer, B. Simard, and D.M. Rayner, Direct observation of size-dependent activation of NO on gold clusters. Phys. Chem. Chem. Phys. 7, 3906–3999, 2005.
-
-
-
Drenck, K.1
Hvelplund, P.2
McKenzie, C.J.3
Nielsen, S.B.4
-
14
-
-
85129165890
-
Three-gold cluster as proton acceptor in nonconventional hydrogen bonds O-H ···Au and N-H ···Au
-
J. Maruani and S. Wilson (eds.), Springer, Dordrecht, pp
-
4 involving nonconventional N-H ···Au hydrogen bond. Nano Lett. 5, 735–739, 2005; (b) E.S. Kryachko and F. Remacle, Complexes of DNA bases and Watson–Crick base pairs with small neutral gold clusters. J. Phys. Chem. B 109, 22746–22757, 2005; (c) F. Remacle and E.S. Kryachko, Three-gold cluster as proton acceptor in nonconventional hydrogen bonds O-H ···Au and N-H ···Au. In Progress in Theoretical Chemistry and Physics, Vol. 15, J. Maruani and S. Wilson (eds.), Springer, Dordrecht, 2006, pp. 433–450.
-
(2006)
Progress in Theoretical Chemistry and Physics, Vol. 15
, pp. 433-450
-
-
-
15
-
-
85129152464
-
-
(a) Q. Chen, D.J. Fraenkel, and N.V. Richardson, Self-assembly of adenine on Cu (110) surfaces. Langmuir 18, 3219–3225, 2002; (b) B. Giese and D. McNaughton, Surface-enhanced Raman spectroscopic study of Uracil: the influence of the surface substrate, surface potential, and pH. J. Phys. Chem. B 106, 1461–1470, 2002; (c) A.P.M. Camargo, H. Baumgärtel, and C. Donner, Coadsorption of the DNA bases thymine and adenine at the Au (111) electrode. Phys. Chem. Chem. Phys. 5, 1657–1664, 2003.
-
-
-
Chen, Q.1
Fraenkel, D.J.2
Richardson, N.V.3
-
16
-
-
85129219503
-
-
(a) L.M. Demers, M. Östblom, H. Zhang, N.-H. Jang, B. Liedberg, C.A. Mirkin, Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold. J. Am. Chem. Soc. 124, 11248–11249, 2002; (b) A. Gourishankar, S. Shukla, K.N. Ganesh, and M. Sastry, Isothermal titration calorimetry studies on the binding of DNA bases and PNA base monomers to gold nanoparticles. J. Am. Chem. Soc. 126, 13186–13187, 2004; (c) S. Rapino and F. Zerbetto, Modeling the stability and the motion of DNA nucleobases on the gold surface. Langmuir 21, 2512–2518, 2005; (d) M. Östblom, B. Liedberg, L.M. Demers, and C.A. Mirkin, On the structure and desorption dynamics of DNA bases adsorbed on gold: a temperature-programmed study. J. Phys. Chem. B 109, 15150– 15160, 2005.
-
-
-
Demers, L.M.1
Östblom, M.2
Zhang, H.3
Jang, N.-H.4
Liedberg, B.5
Mirkin, C.A.6
-
17
-
-
0031553346
-
Theoretical analysis of the bonding between CO and positively charged atoms
-
A.J. Lupinetti, S. Fau, G. Frenking, and S.H. Strauss, Theoretical analysis of the bonding between CO and positively charged atoms. J. Phys. Chem. A 101, 9551–9559, 1997.
-
(1997)
J. Phys. Chem. A
, vol.101
, pp. 9551-9559
-
-
Lupinetti, A.J.1
Fau, S.2
Frenking, G.3
Strauss, S.H.4
-
18
-
-
85129172488
-
-
2 to form hydrogen peroxide: density functional theory investigation. J. Phys. Chem. B 109, 22392–22406, 2005; and references therein.
-
-
-
Wells, D.H.1
-
20
-
-
85129134556
-
-
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, GAUSSIAN 03 (Revision A.1), Gaussian, Inc., Pittsburgh, PA, USA, 2003.
-
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery, J.A.7
-
21
-
-
0000352837
-
Ab initio relativistic effective potentials with spin-orbit operators. IV. Cs through Rn
-
R.B. Ross, J.M. Powers, T. Atashroo, W.C. Ermler, L.A. LaJohn, P.A. Christiansen, Ab initio relativistic effective potentials with spin-orbit operators. IV. Cs through Rn. J. Chem. Phys. 93, 6654–6670, 1990.
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 6654-6670
-
-
Ross, R.B.1
Powers, J.M.2
Atashroo, T.3
Ermler, W.C.4
Lajohn, L.A.5
Christiansen, P.A.6
-
22
-
-
0011734909
-
-
(a) D.A. McQuarrie, Statistical Mechanics, Harper and Row, New York, 1976; (b) J.E. Del Bene, H.D. Mettee, M.J. Frisch, B.T. Luke, and J.A. Pople, Ab initio computation of the enthalpies of some gas-phase hydration reactions. J. Phys. Chem. 87, 3279–3282, 1983.
-
(1983)
Phys. Chem
, vol.87
, pp. 3279-3282
-
-
McQuarrie, D.A.1
Del Bene, J.E.2
Mettee, H.D.3
Frisch, M.J.4
Luke, B.T.5
Pople, J.A.6
-
24
-
-
85129167060
-
hys. 122
-
(a) F. Remacle and E.S. Kryachko, Small gold clusters Au5≤n≤8 and their cationic and anionic cousins. Adv. Quantum Chem. 47, 423–464, 2004; (b) F. Remacle and E.S. Kryachko, Structure and energetics of two-and three-dimensional neutral, cationic, and anionic gold clusters AuZ5≤n≤9(Z = 0, ±1). J. Chem. Phys. 122, 044304-1 – 044304-14 (2005).
-
(2005)
044304-1 – 044304-14
-
-
Remacle, F.1
Kryachko, E.S.2
Remacle, F.3
Kryachko, E.S.4
-
25
-
-
85129165704
-
-
Within the present computational approach, the triangular conformer of the Au
-
3 ) = 2.634Å.
-
-
-
-
26
-
-
85129131844
-
Small gold clusters form nonconventional hydrogen bonds X-H ···Au: Gold–water clusters as example
-
P. Politzer (ed.), Elsevier, Amsterdam
-
(a) E.S. Kryachko and F. Remacle, Three-gold clusters form nonconventional hydrogen bonds O–H ···Au and N–H ···Au with formamide and formic acid. Chem. Phys. Lett. 404, 142–149, 2005; (b) E.S. Kryachko, A. Karpfen, and F. Remacle, Nonconventional hydrogen bonding between clusters of gold and hydrogen fluoride. J. Phys. Chem. A 109, 7309–7318, 2005; (c) E.S. Kryachko and F. Remacle, Small gold clusters form nonconventional hydrogen bonds X-H ···Au: gold–water clusters as example. In Theoretical Aspects of Chemical Reactivity, A. Torro-Labbé(ed.),Theoretical and Computational Chemistry, Vol.16, P. Politzer (ed.), Elsevier, Amsterdam, 2005.
-
(2005)
Theoretical Aspects of Chemical Reactivity, A. Torro-Labbé(ed.),Theoretical and Computational Chemistry, Vol.16
-
-
Kryachko, E.S.1
Remacle, F.2
Kryachko, E.S.3
Karpfen, A.4
Remacle, F.5
-
27
-
-
85129218145
-
electronic properties
-
(a) G. Bravo-Pérez, I.L. Garzón, and O. Novaro, Ab initio study of small gold clusters. J. Mol. Struct. (THEOCHEM) 493, 225–231, 1999; (b) H. Grönbeck and W. Andreoni, Gold and platinum microclusters and their anions: comparison of structural and electronic properties. Chem. Phys. 262, 1–14, 2000.
-
(2000)
Chem. Phys
, vol.262
, pp. 1-14
-
-
Bravo-Pérez, G.1
Garzón, I.L.2
Novaro, O.3
Grönbeck, H.4
Andreoni, W.5
-
28
-
-
0141570926
-
Geometrical and electronic structures of gold, silver, and gold–silver binary clusters: Origins of ductility of gold and gold–silver alloy formation
-
H.M. Lee, M. Ge, B.R. Sahu, P. Tarakeshwar, and K.S. Kim, Geometrical and electronic structures of gold, silver, and gold–silver binary clusters: origins of ductility of gold and gold–silver alloy formation. J. Phys. Chem. B 107, 9994–10005, 2003.
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 9994-10005
-
-
Lee, H.M.1
Ge, M.2
Sahu, B.R.3
Tarakeshwar, P.4
Kim, K.S.5
-
29
-
-
85129202711
-
-
(a) R. Näsänen, Equilibrium in ammoniacal solution of silver nitrate. Acta Chem. Scand. 1, 763–769, 1947; (b) F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, 1988; (c) R. Garner, J. Yperman, J. Mullens, L.C. van Poucke, A potentiometric study of the complexation of aliphatic acyclic monoamines with Ag (I) in 1 m nitrate. J. Coord. Chem. 30, 151–164, 1993.
-
(1993)
Coord. Chem
, vol.30
, pp. 151-164
-
-
Näsänen, R.1
Cotton, F.A.2
Wilkinson, G.3
Garner, R.4
Yperman, J.5
Mullens, J.6
van Poucke, L.C.7
-
30
-
-
0005469297
-
2 the product of formation constants was measured by
-
L.H. Skibsted and J. Bjerrum, Studies on gold complexes. I. Robustness, stability and acid dissociation of the tetramminegold (III)
-
2 the product of formation constants was measured by L.H. Skibsted and J. Bjerrum, Studies on gold complexes. I. Robustness, stability and acid dissociation of the tetramminegold (III). Acta Chem. Scand., Ser. A 28, 740–746, 1974.
-
(1974)
Acta Chem. Scand., Ser. A
, vol.28
, pp. 740-746
-
-
-
31
-
-
85129202808
-
-
(a) C.G. Pimentel and A.L. McClellan, The Hydrogen Bond, Freeman, San Francisco, 1960; (b) P. Schuster, G. Zundel, and C. Sandorfy (eds.), The Hydrogen Bond. Recent Developments in Theory and Experiments, North-Holland, Amsterdam, 1976; (c) G.A. Jeffrey, An Introduction to Hydrogen Bonding, The University Press, Oxford, 1997; (d) S. Scheiner, Hydrogen Bonding. A Theoretical Perspective, The University Press, Oxford, 1997; (e) G.R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, The University Press, Oxford, 1999; (f) T. Steiner, The hydrogen bond in the solid state, Angew. Chem. Int. Ed. 41, 48–76, 2002.
-
-
-
Pimentel, C.G.1
McClellan, A.L.2
-
33
-
-
85129223818
-
-
(a) K.L. Kompa and R.D. Levine, A molecular logic gate. Proc. Natl. Acad. Sci. USA 98, 410–414, 2001; (b) F. Remacle, S. Speiser, and R.D. Levine, Intermolecular and intramolecular logic gates. J. Phys. Chem. A 105, 5589–5591, 2001; (c) F. Remacle and R.D. Levine, Towards molecular logic machines. J. Chem. Phys. 114, 10239–10246, 2001; (d) C. Joachim, J.K. Gimzewski, and A. Aviram, Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548, 2000; (e) C.P. Collier, E.W. Wong, M. Belohradsk, F.M. Raymo, J. F. Stoddart, P.J. Kuekes, R.S. Williams, and J.R. Heath, Electronically configurable molecular-based logic gates. Science 285, 391–394, 1999; (f) J.R. Heath, Wires, switches and wiring, a route towards a chemically assembled electronic nanocomputer. Pure Appl. Chem. 72, 11–20, 2000; (g) M.A. Reed and J.M. Tour, Computing with molecules, Sci. Am. 282, 86–89 (2000); (h) J. Fiurášek, N.J. Cerf, I. Duchemin, and C. Joachim, Intramolecular Hamiltonian logic gates. Physica E 24, 161–172, 2004; (i) C.M. Tesch and R. De Vivie-Riedle, Vibrational molecular quantum computing: basis set independence and theoretical realization of the Deutsch-Jozsa algorithm. J. Chem. Phys. 121, 12158–12168 (2004); (k) J.H. Reina, R.G. Beausoleil, T.P. Spiller, and W.J. Munro, Radiative corrections and quantum gates in molecular systems. Phys. Rev. Lett. 93, 250501-1 – 250501-4; (l) S. Giordani and F.M. Raymo, A switch in a cage with a memory. Org. Lett. 5, 3559–3562, 2003; (m) E.G. Emberly and G. Kirczenow, The smallest molecular switch. Phys. Rev. Lett. 91, 188301-1 – 188301-4, 2003; (n) Y.H. Jang, S. Hwang, Y.-H. Kim, S.S. Jang, and W.A. Goddard III, DFT studies [2] of the rotaxane component of the StoddartHeath molecular switch. J. Am. Chem. Soc. 126, 12636–12645, 2004; (o) I. Duchemin and C. Joachim, A quantum digital half adder inside a single molecule. Chem. Phys. Lett. 406, 167–172, 2005; (p) F. Remacle and R.D. Levine, Quasiclassical computation. Proc. Natl. Acad. Sci. USA 101, 12091–12095, 2004; (q) F. Remacle, J.R. Heath, and R.D. Levine, Electrical addressing of confined quantum systems for quasiclassical computation and finite state logic machines. Proc. Natl. Acad. Sci. USA 102, 5653–5658, 2005; and references therein.
-
-
-
Kompa, K.L.1
Levine, R.D.2
-
35
-
-
25844445334
-
Real-time observation of ionization-induced hydrophobic → hydrophilic switching
-
S. Ishiuchi, M. Sakai, Y. Tsuchida, A. Takeda, Y. Kawashima, M. Fujii, O. Dopfer, and K. Müller-Dethlefs, Real-time observation of ionization-induced hydrophobic → hydrophilic switching. Angew. Chem. Int. Ed. 44, 6149–6151, 2005.
-
(2005)
Angew. Chem. Int. Ed.
, vol.44
, pp. 6149-6151
-
-
Ishiuchi, S.1
Sakai, M.2
Tsuchida, Y.3
Takeda, A.4
Kawashima, Y.5
Fujii, M.6
Dopfer, O.7
Müller-Dethlefs, K.8
|