-
1
-
-
0035826155
-
-
10.1038/35065725.
-
Strogatz S. Nature 2001, 410:268. 10.1038/35065725.
-
(2001)
Nature
, vol.410
, pp. 268
-
-
Strogatz, S.1
-
6
-
-
33646366905
-
-
10.1016/j.physleta.2006.01.068.
-
Lu J. Phys. Lett. A 2006, 354:305. 10.1016/j.physleta.2006.01.068.
-
(2006)
Phys. Lett. A
, vol.354
, pp. 305
-
-
Lu, J.1
-
10
-
-
18844427587
-
-
10.1016/j.physa.2005.01.021
-
Deng W. Li C. Physica A 2005, 353:61. 10.1016/j.physa.2005.01.021
-
(2005)
Physica A
, vol.353
, pp. 61
-
-
Deng, W.1
Li, C.2
-
12
-
-
27744554781
-
-
10.1016/j.physa.2005.06.078
-
Li C. Deng W. Xu D. Physica A 2006, 360:171. 10.1016/j.physa.2005.06.078
-
(2006)
Physica A
, vol.360
, pp. 171
-
-
Li, C.1
Deng, W.2
Xu, D.3
-
13
-
-
22844431613
-
-
10.1016/j.chaos.2005.04.032.
-
Lu J.G. Chaos, Solitons Fractals 2006, 27:519. 10.1016/j.chaos.2005.04.032.
-
(2006)
Chaos, Solitons Fractals
, vol.27
, pp. 519
-
-
Lu, J.G.1
-
16
-
-
0038718854
-
-
10.1137/S003614450342480.
-
Newman M. SIAM Rev. 2003, 45:167. 10.1137/S003614450342480.
-
(2003)
SIAM Rev.
, vol.45
, pp. 167
-
-
Newman, M.1
-
17
-
-
77649232335
-
-
10.1016/j.physleta.2010.01.042
-
Wang J. Zhang Y. Phys. Lett. A 2010, 374:1464. 10.1016/j.physleta.2010.01.042
-
(2010)
Phys. Lett. A
, vol.374
, pp. 1464
-
-
Wang, J.1
Zhang, Y.2
-
20
-
-
84958262614
-
-
This is an iterative algorithm that performs a local averaging over neighbor nodes, similar to a diffusion process.
-
This is an iterative algorithm that performs a local averaging over neighbor nodes, similar to a diffusion process.
-
-
-
-
22
-
-
34547311905
-
-
10.1103/PhysRevE.75.066212
-
Lin W. Ma H. Phys. Rev. E 2007, 75:066212. 10.1103/PhysRevE.75.066212
-
(2007)
Phys. Rev. E
, vol.75
, pp. 066212
-
-
Lin, W.1
Ma, H.2
-
23
-
-
63449084428
-
-
10.1063/1.3068350
-
Wang Y.T. Z. Fang J. Chaos 2009, 19:013112. 10.1063/1.3068350
-
(2009)
Chaos
, vol.19
, pp. 013112
-
-
Wang, Y.T.Z.1
Fang, J.2
-
24
-
-
84958262615
-
-
The infectious diseases that spread across different communities provide an example of outer synchronization in the real world. Other applications can be found in Refs. 2526.
-
The infectious diseases that spread across different communities provide an example of outer synchronization in the real world. Other applications can be found in Refs. 2526.
-
-
-
-
27
-
-
63849299253
-
-
10.1063/1.3072787
-
Wu X. Zheng W. Zhou J. Chaos 2009, 19:013109. 10.1063/1.3072787
-
(2009)
Chaos
, vol.19
, pp. 013109
-
-
Wu, X.1
Zheng, W.2
Zhou, J.3
-
28
-
-
77954465625
-
-
10.1063/1.3387674
-
Li Z. Xue X. Chaos 2010, 20:023106. 10.1063/1.3387674
-
(2010)
Chaos
, vol.20
, pp. 023106
-
-
Li, Z.1
Xue, X.2
-
29
-
-
73449145071
-
-
10.1016/j.physa.2009.12.014
-
Wang G. Cao J. Lu J. Physica A 2010, 389:1480. 10.1016/j.physa.2009.12.014
-
(2010)
Physica A
, vol.389
, pp. 1480
-
-
Wang, G.1
Cao, J.2
Lu, J.3
-
30
-
-
78149355495
-
-
10.1088/1674-1056/19/7/070511
-
Wu X.J. Lu H.T. Chinese Phys. B 2010, 19:070511. 10.1088/1674-1056/19/7/070511
-
(2010)
Chinese Phys. B
, vol.19
, pp. 070511
-
-
Wu, X.J.1
Lu, H.T.2
-
31
-
-
84958262616
-
-
See Eq. in Ref. 30. This equality does not hold for general nonlinear systems such as, e.g., the Lorenz system.
-
See Eq. in Ref. 30. This equality does not hold for general nonlinear systems such as, e.g., the Lorenz system.
-
-
-
-
32
-
-
84958262617
-
-
Specifically, we find sufficient and necessary conditions for the fractional-order differential equations governing the dynamics of the synchronization error, ē(t), to have a fixed point at ē(t)=0.
-
Specifically, we find sufficient and necessary conditions for the fractional-order differential equations governing the dynamics of the synchronization error, ē(t), to have a fixed point at ē(t)=0.
-
-
-
-
33
-
-
84958262618
-
-
Two systems A and B are in a generalized synchronization status when the state of the system B can be obtained as a deterministic transformation of the state of the system A.
-
Two systems A and B are in a generalized synchronization status when the state of the system B can be obtained as a deterministic transformation of the state of the system A.
-
-
-
-
36
-
-
58149209999
-
-
10.1016/0167-2789(95)00171-Y
-
Jackson E. Grosu I. Physica D 1995, 85:1. 10.1016/0167-2789(95)00171-Y
-
(1995)
Physica D
, vol.85
, pp. 1
-
-
Jackson, E.1
Grosu, I.2
-
38
-
-
67649626081
-
-
10.1016/j.automatica.2009.04.003
-
Li Y. Chen Y. Podlubny I. Automatica 2009, 45:1965. 10.1016/j.automatica.2009.04.003
-
(2009)
Automatica
, vol.45
, pp. 1965
-
-
Li, Y.1
Chen, Y.2
Podlubny, I.3
-
42
-
-
35748971445
-
-
10.1016/j.physa.2007.08.039.
-
Tavazoei M.H. M. S. Physica A 2008, 387:57. 10.1016/j.physa.2007.08.039.
-
(2008)
Physica A
, vol.387
, pp. 57
-
-
Tavazoei, M.H.M.S.1
-
43
-
-
35748971445
-
-
10.1016/j.physa.2007.08.039
-
Tavazoei M. Haeri M. Physica A 2008, 387:57. 10.1016/j.physa.2007.08.039
-
(2008)
Physica A
, vol.387
, pp. 57
-
-
Tavazoei, M.1
Haeri, M.2
-
49
-
-
55249087154
-
-
10.1016/j.automatica.2008.07.003
-
Ahn H. Chen Y. Automatica 2008, 44:2985. 10.1016/j.automatica.2008.07.003
-
(2008)
Automatica
, vol.44
, pp. 2985
-
-
Ahn, H.1
Chen, Y.2
-
52
-
-
84958262619
-
-
i,j| < c for all i and j.
-
i,j| < c for all i and j.
-
-
-
|