메뉴 건너뛰기




Volumn 21, Issue 3, 2011, Pages

Generating macroscopic chaos in a network of globally coupled phase oscillators

Author keywords

[No Author keywords available]

Indexed keywords


EID: 80053404723     PISSN: 10541500     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.3638441     Document Type: Article
Times cited : (44)

References (47)
  • 4
    • 21344481602 scopus 로고
    • 10.1007/BF02188217.
    • Crawford J.D. J. Stat. Phys. 1994, 74:1047. 10.1007/BF02188217.
    • (1994) J. Stat. Phys. , vol.74 , pp. 1047
    • Crawford, J.D.1
  • 5
    • 0039592729 scopus 로고    scopus 로고
    • 10.1016/S0167-2789(00)00094-4.
    • Strogatz S.H. Physica D 2000, 143:1. 10.1016/S0167-2789(00)00094-4.
    • (2000) Physica D , vol.143 , pp. 1
    • Strogatz, S.H.1
  • 9
    • 54749126999 scopus 로고    scopus 로고
    • 10.1063/1.2930766
    • Ott E. Antonsen T.M. Chaos 2008, 18:037113. 10.1063/1.2930766
    • (2008) Chaos , vol.18 , pp. 037113
    • Ott, E.1    Antonsen, T.M.2
  • 10
    • 67651092270 scopus 로고    scopus 로고
    • 10.1063/1.3136851
    • Ott E. Antonsen T.M. Chaos 2009, 19:023117. 10.1063/1.3136851
    • (2009) Chaos , vol.19 , pp. 023117
    • Ott, E.1    Antonsen, T.M.2
  • 12
  • 13
  • 15
    • 70449399335 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.80.046215
    • Pazó D. Montbrió E. Phys. Rev. E 2009, 80:046215. 10.1103/PhysRevE.80.046215
    • (2009) Phys. Rev. E , vol.80 , pp. 046215
    • Pazó, D.1    Montbrió, E.2
  • 19
    • 0002541234 scopus 로고
    • 10.1016/0167-2789(94)90275-5
    • Nakagawa N. Kuramoto Y. Physica D 1994, 75:74. 10.1016/0167-2789(94)90275-5
    • (1994) Physica D , vol.75 , pp. 74
    • Nakagawa, N.1    Kuramoto, Y.2
  • 26
    • 0000478424 scopus 로고
    • 10.1016/0167-2789(94)90196-1
    • Watanabe S. Strogatz S.H. Physica D 1994, 74:197. 10.1016/0167-2789(94)90196-1
    • (1994) Physica D , vol.74 , pp. 197
    • Watanabe, S.1    Strogatz, S.H.2
  • 30
    • 84958288699 scopus 로고    scopus 로고
    • One might ask is whether the dynamics for the macroscopic mean field described by Eqs. (10) and (11) truly represent the long-time dynamics for the full network since the ansatz Eq. (8) only represents a small subspace within the space of all possible density functions. Ott and Antonsen (Ref. 10) showed that under some rather generic conditions, the submanifold defined by the ansatz is indeed attr
    • ω(ω,t)g(ω)dω at large t, and α(ω,t) will evolve according to Eq.
  • 31
    • 84958288700 scopus 로고    scopus 로고
    • iφ into Eq. for the macroscopic mean field of the classic Kuramoto network, the relevant macroscopic dynamics can be further reduced to a single ODE in p.
    • iφ into Eq. for the macroscopic mean field of the classic Kuramoto network, the relevant macroscopic dynamics can be further reduced to a single ODE in p.
  • 35
    • 84958288701 scopus 로고    scopus 로고
    • One can see from the p equation in Eq. that p=<0 at p 1 for all choices of the parameters including the time varying situation. When the incoherent state becomes an unstable focus after passing through the Hopf bifurcation, the annulus re
    • One can see from the p equation in Eq. that p=<0 at p 1 for all choices of the parameters including the time varying situation. When the incoherent state becomes an unstable focus after passing through the Hopf bifurcation, the annulus region defined by 0 < p < 1 becomes a trapping region for the network dynamics. For the time static network (A 0), the asymptotic state is a periodic orbit and for the time-varying network with two incommensurate intrinsic frequencies, the macroscopic state tends toward a quasi-periodic state within this annulus region.
  • 36
    • 84958288702 scopus 로고    scopus 로고
    • Analysis of the phase locking and the Arnold tongue structure for this time-varying bimodal Kuramoto network will be reported elsewhere.
    • Analysis of the phase locking and the Arnold tongue structure for this time-varying bimodal Kuramoto network will be reported elsewhere.
  • 40
    • 0003582543 scopus 로고    scopus 로고
    • 2nd ed. (Cambridge University Press, Cambridge, UK)
    • Ott E. Chaos in Dynamical Systems 2002, 32-45. 2nd ed. (Cambridge University Press, Cambridge, UK)
    • (2002) Chaos in Dynamical Systems , pp. 32-45
    • Ott, E.1
  • 45
    • 84968514104 scopus 로고
    • 10.1090/S0002-9904-1967-11798-1.
    • Smale S. Bull. Am. Math. Soc. 1967, 73:747. 10.1090/S0002-9904-1967-11798-1.
    • (1967) Bull. Am. Math. Soc. , vol.73 , pp. 747
    • Smale, S.1
  • 46
    • 84958288703 scopus 로고    scopus 로고
    • In a recent paper by Kuznetsov (Ref. 22), collective phase chaos was numerically observed from the averaged system of a network of van del Pol oscillators with an usual nonlinear resonant on-off switching interaction. Although the resulting network of phase oscillators has a non-Kuramoto type coupling and thus a reduction technique similar to the OA method (Refs. 910) or the Watanabe and Strogatz
    • In a recent paper by Kuznetsov (Ref. 22), collective phase chaos was numerically observed from the averaged system of a network of van del Pol oscillators with an usual nonlinear resonant on-off switching interaction. Although the resulting network of phase oscillators has a non-Kuramoto type coupling and thus a reduction technique similar to the OA method (Refs. 910) or the Watanabe and Strogatz method (Ref. 26) cannot be applied, numerical results from a large but finite network indicate that the macroscopic mean field can still be low dimensional and chaotic. This provides more evidence that low dimensional chaos can be generated in the macroscopic mean field of large networks of phase oscillators.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.