-
1
-
-
0001265176
-
-
10.1126/science.1089287, 10.1126/science.1070757, 10.1103/PhysRevD.58.073002, 10.1103/PhysRevE.51.1020, (Springer, New York)
-
Winfree A.T. Yamaguchi S. Isejima H. Matsuo T. Okura R. Yagita K. Kobayashi M. Okamura H. Kiss I.Z. Zhai Y. Hudson J.L. Pantaleone J. K. W. Swift J.W. Phys. Rev. E 1995, 51:1020. 10.1126/science.1089287, 10.1126/science.1070757, 10.1103/PhysRevD.58.073002, 10.1103/PhysRevE.51.1020, (Springer, New York)
-
(1995)
Phys. Rev. E
, vol.51
, pp. 1020
-
-
Winfree, A.T.1
Yamaguchi, S.2
Isejima, H.3
Matsuo, T.4
Okura, R.5
Yagita, K.6
Kobayashi, M.7
Okamura, H.8
Kiss, I.Z.9
Zhai, Y.10
Hudson, J.L.11
Pantaleone, J.K.W.12
Swift, J.W.13
-
4
-
-
21344481602
-
-
10.1007/BF02188217.
-
Crawford J.D. J. Stat. Phys. 1994, 74:1047. 10.1007/BF02188217.
-
(1994)
J. Stat. Phys.
, vol.74
, pp. 1047
-
-
Crawford, J.D.1
-
5
-
-
0039592729
-
-
10.1016/S0167-2789(00)00094-4.
-
Strogatz S.H. Physica D 2000, 143:1. 10.1016/S0167-2789(00)00094-4.
-
(2000)
Physica D
, vol.143
, pp. 1
-
-
Strogatz, S.H.1
-
7
-
-
0036888198
-
-
10.1209/epl/i1996-00433-3, 10.1103/PhysRevE.61.7212, 10.1016/S0167-2789(02)00663-2
-
Pikovsky A.S. Rosenblum M.G. Kurths J. Sakaguchi H. Ott E. So P. Barreto E. Antonsen T. Physica D 2002, 173:29. 10.1209/epl/i1996-00433-3, 10.1103/PhysRevE.61.7212, 10.1016/S0167-2789(02)00663-2
-
(2002)
Physica D
, vol.173
, pp. 29
-
-
Pikovsky, A.S.1
Rosenblum, M.G.2
Kurths, J.3
Sakaguchi, H.4
Ott, E.5
So, P.6
Barreto, E.7
Antonsen, T.8
-
8
-
-
0000120431
-
-
10.1103/PhysRevLett.72.1644, 10.1103/PhysRevLett.81.4116, 10.1103/PhysRevLett.82.4424, 10.1016/S0167-2789(99)00015-9, 10.1103/PhysRevLett.106.234102
-
Pikovsky A.S. Kurths J. Shibata T. Kaneko K. Shibata T. Chawanya T. Kaneko K. Cencini M. Falcioni M. Vergni D. Vulpiani V. Omelchenko I. Maistrenko Y. Hövel P. Schöll E. Phys. Rev. Lett. 2011, 106:234102. 10.1103/PhysRevLett.72.1644, 10.1103/PhysRevLett.81.4116, 10.1103/PhysRevLett.82.4424, 10.1016/S0167-2789(99)00015-9, 10.1103/PhysRevLett.106.234102
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 234102
-
-
Pikovsky, A.S.1
Kurths, J.2
Shibata, T.3
Kaneko, K.4
Shibata, T.5
Chawanya, T.6
Kaneko, K.7
Cencini, M.8
Falcioni, M.9
Vergni, D.10
Vulpiani, V.11
Omelchenko, I.12
Maistrenko, Y.13
Hövel, P.14
Schöll, E.15
-
9
-
-
54749126999
-
-
10.1063/1.2930766
-
Ott E. Antonsen T.M. Chaos 2008, 18:037113. 10.1063/1.2930766
-
(2008)
Chaos
, vol.18
, pp. 037113
-
-
Ott, E.1
Antonsen, T.M.2
-
10
-
-
67651092270
-
-
10.1063/1.3136851
-
Ott E. Antonsen T.M. Chaos 2009, 19:023117. 10.1063/1.3136851
-
(2009)
Chaos
, vol.19
, pp. 023117
-
-
Ott, E.1
Antonsen, T.M.2
-
15
-
-
70449399335
-
-
10.1103/PhysRevE.80.046215
-
Pazó D. Montbrió E. Phys. Rev. E 2009, 80:046215. 10.1103/PhysRevE.80.046215
-
(2009)
Phys. Rev. E
, vol.80
, pp. 046215
-
-
Pazó, D.1
Montbrió, E.2
-
16
-
-
67650096320
-
-
10.1103/PhysRevLett.101.084103, 10.1063/1.2952447, 10.1103/PhysRevLett.105.084101, 10.1103/PhysRevLett.101.264103, 10.1103/PhysRevLett.103.044101, 10.1063/1.3068353, 10.1016/j.physd.2009.04.012.
-
Abrams D.M. Mirollo R. Strogatz S.H. Wiley D.A. Antonsen T.M. Faghih R.T. Girvan M. Ott E. Platig J. Lafuerza L.F. Colet P. Toral R. Pikovsky A. Rosenblum M. Lee W.S. Ott E. Antonsen T.M. Laing C.R. Laing C.R. Physica D 2009, 238:1569. 10.1103/PhysRevLett.101.084103, 10.1063/1.2952447, 10.1103/PhysRevLett.105.084101, 10.1103/PhysRevLett.101.264103, 10.1103/PhysRevLett.103.044101, 10.1063/1.3068353, 10.1016/j.physd.2009.04.012.
-
(2009)
Physica D
, vol.238
, pp. 1569
-
-
Abrams, D.M.1
Mirollo, R.2
Strogatz, S.H.3
Wiley, D.A.4
Antonsen, T.M.5
Faghih, R.T.6
Girvan, M.7
Ott, E.8
Platig, J.9
Lafuerza, L.F.10
Colet, P.11
Toral, R.12
Pikovsky, A.13
Rosenblum, M.14
Lee, W.S.15
Ott, E.16
Antonsen, T.M.17
Laing, C.R.18
Laing, C.R.19
-
17
-
-
79960042045
-
-
10.1140/epjd/e2010-00225-2, 10.1063/1.3574030
-
Alonso L.M. Alliende J.A. Mindlin G.B. Alonso L.M. Mindlin G.B. Chaos 2011, 21:023102. 10.1140/epjd/e2010-00225-2, 10.1063/1.3574030
-
(2011)
Chaos
, vol.21
, pp. 023102
-
-
Alonso, L.M.1
Alliende, J.A.2
Mindlin, G.B.3
Alonso, L.M.4
Mindlin, G.B.5
-
19
-
-
0002541234
-
-
10.1016/0167-2789(94)90275-5
-
Nakagawa N. Kuramoto Y. Physica D 1994, 75:74. 10.1016/0167-2789(94)90275-5
-
(1994)
Physica D
, vol.75
, pp. 74
-
-
Nakagawa, N.1
Kuramoto, Y.2
-
30
-
-
84958288699
-
-
One might ask is whether the dynamics for the macroscopic mean field described by Eqs. (10) and (11) truly represent the long-time dynamics for the full network since the ansatz Eq. (8) only represents a small subspace within the space of all possible density functions. Ott and Antonsen (Ref. 10) showed that under some rather generic conditions, the submanifold defined by the ansatz is indeed attr
-
ω(ω,t)g(ω)dω at large t, and α(ω,t) will evolve according to Eq.
-
-
-
-
31
-
-
84958288700
-
-
iφ into Eq. for the macroscopic mean field of the classic Kuramoto network, the relevant macroscopic dynamics can be further reduced to a single ODE in p.
-
iφ into Eq. for the macroscopic mean field of the classic Kuramoto network, the relevant macroscopic dynamics can be further reduced to a single ODE in p.
-
-
-
-
33
-
-
0003478288
-
-
(Springer, New York)
-
Guckenheimer J. Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields 1983, 166-180. and (Springer, New York)
-
(1983)
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
, pp. 166-180
-
-
Guckenheimer, J.1
Holmes, P.2
-
35
-
-
84958288701
-
-
One can see from the p equation in Eq. that p=<0 at p 1 for all choices of the parameters including the time varying situation. When the incoherent state becomes an unstable focus after passing through the Hopf bifurcation, the annulus re
-
One can see from the p equation in Eq. that p=<0 at p 1 for all choices of the parameters including the time varying situation. When the incoherent state becomes an unstable focus after passing through the Hopf bifurcation, the annulus region defined by 0 < p < 1 becomes a trapping region for the network dynamics. For the time static network (A 0), the asymptotic state is a periodic orbit and for the time-varying network with two incommensurate intrinsic frequencies, the macroscopic state tends toward a quasi-periodic state within this annulus region.
-
-
-
-
36
-
-
84958288702
-
-
Analysis of the phase locking and the Arnold tongue structure for this time-varying bimodal Kuramoto network will be reported elsewhere.
-
Analysis of the phase locking and the Arnold tongue structure for this time-varying bimodal Kuramoto network will be reported elsewhere.
-
-
-
-
38
-
-
80053421951
-
-
10.1016/j.physd.2004.03.013, 10.3934/mbe.2004.1.347
-
Belykh I.V. Belykh V.N. Hasler M. Skufca J.D. Bollt E.M. Math. Biosci. 2004, 1:347. 10.1016/j.physd.2004.03.013, 10.3934/mbe.2004.1.347
-
(2004)
Math. Biosci.
, vol.1
, pp. 347
-
-
Belykh, I.V.1
Belykh, V.N.2
Hasler, M.3
Skufca, J.D.4
Bollt, E.M.5
-
40
-
-
0003582543
-
-
2nd ed. (Cambridge University Press, Cambridge, UK)
-
Ott E. Chaos in Dynamical Systems 2002, 32-45. 2nd ed. (Cambridge University Press, Cambridge, UK)
-
(2002)
Chaos in Dynamical Systems
, pp. 32-45
-
-
Ott, E.1
-
41
-
-
0001231525
-
-
10.2307/2946605 48, 1676
-
Kan I. Kocak H. Yorke J.A. Dawson S.P. Grebogi C. Kocak H. Ann. Math 1993, 136:219. 10.2307/2946605 48, 1676.
-
(1993)
Ann. Math
, vol.136
, pp. 219
-
-
Kan, I.1
Kocak, H.2
Yorke, J.A.3
Dawson, S.P.4
Grebogi, C.5
Kocak, H.6
-
45
-
-
84968514104
-
-
10.1090/S0002-9904-1967-11798-1.
-
Smale S. Bull. Am. Math. Soc. 1967, 73:747. 10.1090/S0002-9904-1967-11798-1.
-
(1967)
Bull. Am. Math. Soc.
, vol.73
, pp. 747
-
-
Smale, S.1
-
46
-
-
84958288703
-
-
In a recent paper by Kuznetsov (Ref. 22), collective phase chaos was numerically observed from the averaged system of a network of van del Pol oscillators with an usual nonlinear resonant on-off switching interaction. Although the resulting network of phase oscillators has a non-Kuramoto type coupling and thus a reduction technique similar to the OA method (Refs. 910) or the Watanabe and Strogatz
-
In a recent paper by Kuznetsov (Ref. 22), collective phase chaos was numerically observed from the averaged system of a network of van del Pol oscillators with an usual nonlinear resonant on-off switching interaction. Although the resulting network of phase oscillators has a non-Kuramoto type coupling and thus a reduction technique similar to the OA method (Refs. 910) or the Watanabe and Strogatz method (Ref. 26) cannot be applied, numerical results from a large but finite network indicate that the macroscopic mean field can still be low dimensional and chaotic. This provides more evidence that low dimensional chaos can be generated in the macroscopic mean field of large networks of phase oscillators.
-
-
-
|