메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 561-565

Degradation assessment of bearing fault using SOM network

Author keywords

bearing fault; degradation assessment; fault classification; SOM; wavelet analysis

Indexed keywords

BEARING FAULT; DEGRADATION ASSESSMENT; DEGRADATION BEHAVIOR; FAULT CHARACTERISTICS; FAULT CLASSIFICATION; FAULT CONDITIONS; FAULT DIAMETER; FAULT MAPPING; LEVEL OF SAFETIES; OUTER RACES; ROLLING ELEMENT BEARING; ROTATING MACHINE; SOM; SOM NETWORKS;

EID: 80053395604     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICNC.2011.6021914     Document Type: Conference Paper
Times cited : (8)

References (14)
  • 2
    • 78751629036 scopus 로고    scopus 로고
    • Fault diagnosis of ball bearings using continuous wavelet transform
    • doi:10.1016/j.asoc.2010.08.011
    • Kankar P K, Sharma S C, and Harsha S P. Fault diagnosis of ball bearings using continuous wavelet transform. Appl. Soft Comput. J. (2010), doi:10.1016/j.asoc.2010.08.011.
    • (2010) Appl. Soft Comput. J.
    • Kankar, P.K.1    Sharma, S.C.2    Harsha, S.P.3
  • 3
    • 24344500897 scopus 로고    scopus 로고
    • Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition
    • DOI 10.1016/j.ndteint.2005.04.003, PII S0963869505000666
    • Purushotham V, Narayanan S and Prasad S A N. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition. NDT & E International, 2005, 38(8): 654-664. (Pubitemid 41261408)
    • (2005) NDT and E International , vol.38 , Issue.8 , pp. 654-664
    • Purushotham, V.1    Narayanan, S.2    Prasad, S.A.N.3
  • 4
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • Samant B, Al-Balushi K R and Al-Araimi S A. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence, 2003, 16(7-8): 657-665.
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , Issue.7-8 , pp. 657-665
    • Samant, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 5
    • 34848858238 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
    • DOI 10.1016/j.measurement.2006.10.010, PII S0263224106002077
    • Yang Y, Yu D and Cheng J. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement, 2007, 40(9-10): 943-950. (Pubitemid 47503473)
    • (2007) Measurement: Journal of the International Measurement Confederation , vol.40 , Issue.9-10 , pp. 943-950
    • Yang, Y.1    Yu, D.2    Cheng, J.3
  • 6
    • 33646512202 scopus 로고    scopus 로고
    • Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines
    • Rojas A and Nandi A K. Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines. Mechanical Systems and Signal Processing, 2006, 20(7): 1523-1536.
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.7 , pp. 1523-1536
    • Rojas, A.1    Nandi, A.K.2
  • 7
    • 57349137762 scopus 로고    scopus 로고
    • Fault severity assessment for rolling element bearings using the lempel-ziv complexity and continuous wavelet transform
    • Hong H and Liang M. Fault severity assessment for rolling element bearings using the Lempel-Ziv complexity and continuous wavelet transform. Journal of Sound and Vibration, 2009, 320(1-2): 452-468.
    • (2009) Journal of Sound and Vibration , vol.320 , Issue.1-2 , pp. 452-468
    • Hong, H.1    Liang, M.2
  • 8
    • 5044252073 scopus 로고    scopus 로고
    • Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
    • Qiu H, Lee J and Yu G. Robust performance degradation assessment methods for enhanced rolling element bearing prognostics. Advanced Engineering Informatics, 2003, 17: 127-140.
    • (2003) Advanced Engineering Informatics , vol.17 , pp. 127-140
    • Qiu, H.1    Lee, J.2    Yu, G.3
  • 9
    • 4344683640 scopus 로고    scopus 로고
    • Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines
    • Yang B S, Hwang W W, Kim D J, et al. Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines. Mechanical Systems and Signal Processing, 2005, 19(2): 371-390.
    • (2005) Mechanical Systems and Signal Processing , vol.19 , Issue.2 , pp. 371-390
    • Yang, B.S.1    Hwang, W.W.2    Kim, D.J.3
  • 10
    • 53849113325 scopus 로고    scopus 로고
    • Defect spatial pattern recognition using a hybrid SOM-SVM approach in semiconductor manufacturing
    • Li T S and Huang C L. Defect spatial pattern recognition using a hybrid SOM-SVM approach in semiconductor manufacturing. Expert Systems with Applications, 2009, 36(1): 374-385.
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 374-385
    • Li, T.S.1    Huang, C.L.2
  • 11
    • 33746588228 scopus 로고    scopus 로고
    • Self-organizing neural projections
    • DOI 10.1016/j.neunet.2006.05.001, PII S0893608006000645
    • Kohonen T. Self-organizing neural projections. Neural Networks, 2006, 19(6-7): 723-733. (Pubitemid 44148941)
    • (2006) Neural Networks , vol.19 , Issue.6-7 , pp. 723-733
    • Kohonen, T.1
  • 12
    • 80053423240 scopus 로고    scopus 로고
    • http://www.eecs.case.edu/laboratory/bearing/download.htm
  • 13
    • 0030165512 scopus 로고    scopus 로고
    • Developments and applications of the self-organizing map and related algorithms
    • Kangas J and Kohonen T. Developments and applications of the self-organizing map and related algorithms. Mathematics and Computers in Simulation. 1996, 41(1-2): 3-12. (Pubitemid 126411642)
    • (1996) Mathematics and Computers in Simulation , vol.41 , Issue.1-2 , pp. 3-12
    • Kangas, J.1    Kohonen, T.2
  • 14
    • 80053404001 scopus 로고    scopus 로고
    • http://www.cis.hut.fi/projects/somtoolbox/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.