메뉴 건너뛰기




Volumn 73, Issue 5, 2011, Pages 926-945

Toward best practices in analyzing datasets with missing data: Comparisons and recommendations

Author keywords

Maximum likelihood; Methods; Missing data; Multiple imputation; National Survey of Families and Households; Regression

Indexed keywords


EID: 80053330700     PISSN: 00222445     EISSN: 17413737     Source Type: Journal    
DOI: 10.1111/j.1741-3737.2011.00861.x     Document Type: Article
Times cited : (417)

References (40)
  • 1
    • 0001823391 scopus 로고    scopus 로고
    • Working with missing data.
    • Acock, A. C. (1997). Working with missing data. Family Science Review, 10, 76-102.
    • (1997) Family Science Review , vol.10 , pp. 76-102
    • Acock, A.C.1
  • 2
    • 33645723230 scopus 로고    scopus 로고
    • Working with missing values.
    • Acock, A. C. (2005). Working with missing values. Journal of Marriage and Family, 67, 1012-1028.
    • (2005) Journal of Marriage and Family , vol.67 , pp. 1012-1028
    • Acock, A.C.1
  • 4
    • 80053327069 scopus 로고    scopus 로고
    • Alone together: How marriage in America is changing. Cambridge, MA: Harvard University Press.
    • Amato, P., Booth, A., Johnson, D. R., & Rogers, S. (2007). Alone together: How marriage in America is changing. Cambridge, MA: Harvard University Press.
    • (2007)
    • Amato, P.1    Booth, A.2    Johnson, D.R.3    Rogers, S.4
  • 6
    • 43749094530 scopus 로고    scopus 로고
    • A new framework for managing and analyzing multiply imputed data in Stata.
    • Carlin, J. B., Galati, J. C., & Royston, P. (2008). A new framework for managing and analyzing multiply imputed data in Stata. The Stata Journal, 8, 49-67.
    • (2008) The Stata Journal , vol.8 , pp. 49-67
    • Carlin, J.B.1    Galati, J.C.2    Royston, P.3
  • 8
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures.
    • Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 9
    • 38349186156 scopus 로고    scopus 로고
    • Plausibility of multivarite normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment.
    • Demirtas, H., Freels, S. A., & Yucel, R. M. (2008). Plausibility of multivarite normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment. Journal of Statistical Computation and Simulation, 78, 69-84.
    • (2008) Journal of Statistical Computation and Simulation , vol.78 , pp. 69-84
    • Demirtas, H.1    Freels, S.A.2    Yucel, R.M.3
  • 10
    • 33746068696 scopus 로고    scopus 로고
    • A primer on the use of modern missing-data methods in psychosomatic medicine research.
    • Enders, C. K. (2006). A primer on the use of modern missing-data methods in psychosomatic medicine research. Psychosomatic Medicine, 68, 427-436.
    • (2006) Psychosomatic Medicine , vol.68 , pp. 427-436
    • Enders, C.K.1
  • 11
    • 47949104235 scopus 로고    scopus 로고
    • A note on the use of missing auxiliary variables in full information maximum likelihood-based structural equation models.
    • Enders, C. K. (2010). A note on the use of missing auxiliary variables in full information maximum likelihood-based structural equation models. Structural Equation Modeling, 15, 434-448.
    • (2010) Structural Equation Modeling , vol.15 , pp. 434-448
    • Enders, C.K.1
  • 12
    • 2642541763 scopus 로고    scopus 로고
    • Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences.
    • Enders, C. K., & Peugh, J. L. (2004). Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences. Structural Equation Modeling, 11, 1-19.
    • (2004) Structural Equation Modeling , vol.11 , pp. 1-19
    • Enders, C.K.1    Peugh, J.L.2
  • 13
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data-relevant variables to FIML-based structural equation models.
    • Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80-100.
    • (2003) Structural Equation Modeling , vol.10 , pp. 80-100
    • Graham, J.W.1
  • 14
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world.
    • Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549-576.
    • (2009) Annual Review of Psychology , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 15
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory.
    • Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206-213.
    • (2007) Prevention Science , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 17
    • 0242710940 scopus 로고    scopus 로고
    • A potential for bias when rounding in multiple imputation.
    • Horton, N. J., Lipsitz, S. R., & Parzen, M. (2003). A potential for bias when rounding in multiple imputation. The American Statistician, 57, 229-232.
    • (2003) The American Statistician , vol.57 , pp. 229-232
    • Horton, N.J.1    Lipsitz, S.R.2    Parzen, M.3
  • 18
    • 49249087332 scopus 로고    scopus 로고
    • The treatment of missing data.
    • W. Outhwaite & S. Turner (Eds.), London: Sage.
    • Howell, D. C. (2008). The treatment of missing data. In W. Outhwaite & S. Turner (Eds.), Handbook of social science methodology. London: Sage.
    • (2008) Handbook of social science methodology.
    • Howell, D.C.1
  • 19
    • 80053305119 scopus 로고    scopus 로고
    • April. Paper presented at the 10th Conference on Health Survey Research Methods, Peachtree City, GA.
    • Johnson, D. R., Roth, V., & Young, R. (2011, April). Planned missing data designs in health surveys. Paper presented at the 10th Conference on Health Survey Research Methods, Peachtree City, GA.
    • (2011) Planned missing data designs in health surveys.
    • Johnson, D.R.1    Roth, V.2    Young, R.3
  • 22
    • 33644945906 scopus 로고    scopus 로고
    • Taking "don't knows" as valid responses: A multiple complete random imputation of missing data.
    • Kroh, M. (2006). Taking "don't knows" as valid responses: A multiple complete random imputation of missing data. Quantity & Quality, 40, 225-244.
    • (2006) Quantity & Quality , vol.40 , pp. 225-244
    • Kroh, M.1
  • 23
    • 77249147857 scopus 로고    scopus 로고
    • Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation.
    • Lee, K. J. (2010). Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation. American Journal of Epidemiology, 171, 1-9.
    • (2010) American Journal of Epidemiology , vol.171 , pp. 1-9
    • Lee, K.J.1
  • 25
    • 0345673603 scopus 로고    scopus 로고
    • A congenial overview and investigation of multiple imputation inferences under uncongeniality.
    • R. M. Groves, D. A. Dillman, J. L. Eltinge, & R. J. A. Little (Eds.), New York: Wiley.
    • Meng, X. L. (2001). A congenial overview and investigation of multiple imputation inferences under uncongeniality. In R. M. Groves, D. A. Dillman, J. L. Eltinge, & R. J. A. Little (Eds.), Survey nonresponse. New York: Wiley.
    • (2001) Survey nonresponse.
    • Meng, X.L.1
  • 27
    • 0038172395 scopus 로고    scopus 로고
    • Tutorial on maximum likelihood estimation.
    • Myung, J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47, 90-100.
    • (2003) Journal of Mathematical Psychology , vol.47 , pp. 90-100
    • Myung, J.1
  • 28
    • 2142647296 scopus 로고    scopus 로고
    • What do we do with missing data? Some options for analysis of incomplete data.
    • Raghunathan, T. E. (2004). What do we do with missing data? Some options for analysis of incomplete data. Annual Review of Public Health, 25, 99-117.
    • (2004) Annual Review of Public Health , vol.25 , pp. 99-117
    • Raghunathan, T.E.1
  • 29
    • 0000555875 scopus 로고    scopus 로고
    • Inference for imputation estimators.
    • Robins, J. M., & Wang, N. (2000). Inference for imputation estimators. Biometrica, 87, 113-124.
    • (2000) Biometrica , vol.87 , pp. 113-124
    • Robins, J.M.1    Wang, N.2
  • 33
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when the imputation and analysis models differ.
    • Schafer, J. L. (2003). Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistica Neerlandica, 57, 19-35.
    • (2003) Statistica Neerlandica , vol.57 , pp. 19-35
    • Schafer, J.L.1
  • 34
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art.
    • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 35
    • 80053324575 scopus 로고    scopus 로고
    • Biases in SPSS 12.0 missing values analysis.
    • von Hippel, P. (2004). Biases in SPSS 12.0 missing values analysis. The American Statistician, 58, 93-108.
    • (2004) The American Statistician , vol.58 , pp. 93-108
    • von Hippel, P.1
  • 36
    • 34548736509 scopus 로고    scopus 로고
    • Regression with missing Ys: An improved strategy for analyzing multiply imputed data.
    • von Hippel, P. (2007). Regression with missing Ys: An improved strategy for analyzing multiply imputed data. Sociological Methodology, 83-118.
    • (2007) Sociological Methodology , pp. 83-118
    • von Hippel, P.1
  • 37
    • 69149105188 scopus 로고    scopus 로고
    • How to impute interactions, squares, and other transformed variables.
    • von Hippel, P. (2009). How to impute interactions, squares, and other transformed variables. Sociological Methodology, 265-291.
    • (2009) Sociological Methodology , pp. 265-291
    • von Hippel, P.1
  • 38
    • 70449834993 scopus 로고    scopus 로고
    • The effect of auxiliary variables and multiple imputation on parameter estimation in confirmatory factor analysis.
    • Yoo, J. E. (2009). The effect of auxiliary variables and multiple imputation on parameter estimation in confirmatory factor analysis. Educational and Psychological Measurement, 69, 929-947.
    • (2009) Educational and Psychological Measurement , vol.69 , pp. 929-947
    • Yoo, J.E.1
  • 39
    • 45749110814 scopus 로고    scopus 로고
    • Using calibration to improve rounding in imputation.
    • Yucel, R. M., He, Y., & Zaslavsky, A. M. (2008). Using calibration to improve rounding in imputation. The American Statistician, 62, 125-129.
    • (2008) The American Statistician , vol.62 , pp. 125-129
    • Yucel, R.M.1    He, Y.2    Zaslavsky, A.M.3
  • 40
    • 80053322690 scopus 로고    scopus 로고
    • Sequential hierarchical regression imputation (SHRIMP). Unpublished manuscript, University of Massachusetts Amherst.
    • Yucel, R. M., Schenker, N., & Raghunathan, T. E. (2007). Sequential hierarchical regression imputation (SHRIMP). Unpublished manuscript, University of Massachusetts Amherst.
    • (2007)
    • Yucel, R.M.1    Schenker, N.2    Raghunathan, T.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.