-
1
-
-
0001823391
-
Working with missing data.
-
Acock, A. C. (1997). Working with missing data. Family Science Review, 10, 76-102.
-
(1997)
Family Science Review
, vol.10
, pp. 76-102
-
-
Acock, A.C.1
-
2
-
-
33645723230
-
Working with missing values.
-
Acock, A. C. (2005). Working with missing values. Journal of Marriage and Family, 67, 1012-1028.
-
(2005)
Journal of Marriage and Family
, vol.67
, pp. 1012-1028
-
-
Acock, A.C.1
-
4
-
-
80053327069
-
-
Alone together: How marriage in America is changing. Cambridge, MA: Harvard University Press.
-
Amato, P., Booth, A., Johnson, D. R., & Rogers, S. (2007). Alone together: How marriage in America is changing. Cambridge, MA: Harvard University Press.
-
(2007)
-
-
Amato, P.1
Booth, A.2
Johnson, D.R.3
Rogers, S.4
-
6
-
-
43749094530
-
A new framework for managing and analyzing multiply imputed data in Stata.
-
Carlin, J. B., Galati, J. C., & Royston, P. (2008). A new framework for managing and analyzing multiply imputed data in Stata. The Stata Journal, 8, 49-67.
-
(2008)
The Stata Journal
, vol.8
, pp. 49-67
-
-
Carlin, J.B.1
Galati, J.C.2
Royston, P.3
-
8
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures.
-
Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351.
-
(2001)
Psychological Methods
, vol.6
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.-M.3
-
9
-
-
38349186156
-
Plausibility of multivarite normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment.
-
Demirtas, H., Freels, S. A., & Yucel, R. M. (2008). Plausibility of multivarite normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment. Journal of Statistical Computation and Simulation, 78, 69-84.
-
(2008)
Journal of Statistical Computation and Simulation
, vol.78
, pp. 69-84
-
-
Demirtas, H.1
Freels, S.A.2
Yucel, R.M.3
-
10
-
-
33746068696
-
A primer on the use of modern missing-data methods in psychosomatic medicine research.
-
Enders, C. K. (2006). A primer on the use of modern missing-data methods in psychosomatic medicine research. Psychosomatic Medicine, 68, 427-436.
-
(2006)
Psychosomatic Medicine
, vol.68
, pp. 427-436
-
-
Enders, C.K.1
-
11
-
-
47949104235
-
A note on the use of missing auxiliary variables in full information maximum likelihood-based structural equation models.
-
Enders, C. K. (2010). A note on the use of missing auxiliary variables in full information maximum likelihood-based structural equation models. Structural Equation Modeling, 15, 434-448.
-
(2010)
Structural Equation Modeling
, vol.15
, pp. 434-448
-
-
Enders, C.K.1
-
12
-
-
2642541763
-
Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences.
-
Enders, C. K., & Peugh, J. L. (2004). Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences. Structural Equation Modeling, 11, 1-19.
-
(2004)
Structural Equation Modeling
, vol.11
, pp. 1-19
-
-
Enders, C.K.1
Peugh, J.L.2
-
13
-
-
0347249765
-
Adding missing-data-relevant variables to FIML-based structural equation models.
-
Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80-100.
-
(2003)
Structural Equation Modeling
, vol.10
, pp. 80-100
-
-
Graham, J.W.1
-
14
-
-
60549085055
-
Missing data analysis: Making it work in the real world.
-
Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549-576.
-
(2009)
Annual Review of Psychology
, vol.60
, pp. 549-576
-
-
Graham, J.W.1
-
15
-
-
34548451124
-
How many imputations are really needed? Some practical clarifications of multiple imputation theory.
-
Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206-213.
-
(2007)
Prevention Science
, vol.8
, pp. 206-213
-
-
Graham, J.W.1
Olchowski, A.E.2
Gilreath, T.D.3
-
16
-
-
33845671300
-
Planned missing data designs in psychological research.
-
Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E. (2006). Planned missing data designs in psychological research. Psychological Methods, 11, 323-343.
-
(2006)
Psychological Methods
, vol.11
, pp. 323-343
-
-
Graham, J.W.1
Taylor, B.J.2
Olchowski, A.E.3
Cumsille, P.E.4
-
17
-
-
0242710940
-
A potential for bias when rounding in multiple imputation.
-
Horton, N. J., Lipsitz, S. R., & Parzen, M. (2003). A potential for bias when rounding in multiple imputation. The American Statistician, 57, 229-232.
-
(2003)
The American Statistician
, vol.57
, pp. 229-232
-
-
Horton, N.J.1
Lipsitz, S.R.2
Parzen, M.3
-
18
-
-
49249087332
-
The treatment of missing data.
-
W. Outhwaite & S. Turner (Eds.), London: Sage.
-
Howell, D. C. (2008). The treatment of missing data. In W. Outhwaite & S. Turner (Eds.), Handbook of social science methodology. London: Sage.
-
(2008)
Handbook of social science methodology.
-
-
Howell, D.C.1
-
19
-
-
80053305119
-
-
April. Paper presented at the 10th Conference on Health Survey Research Methods, Peachtree City, GA.
-
Johnson, D. R., Roth, V., & Young, R. (2011, April). Planned missing data designs in health surveys. Paper presented at the 10th Conference on Health Survey Research Methods, Peachtree City, GA.
-
(2011)
Planned missing data designs in health surveys.
-
-
Johnson, D.R.1
Roth, V.2
Young, R.3
-
22
-
-
33644945906
-
Taking "don't knows" as valid responses: A multiple complete random imputation of missing data.
-
Kroh, M. (2006). Taking "don't knows" as valid responses: A multiple complete random imputation of missing data. Quantity & Quality, 40, 225-244.
-
(2006)
Quantity & Quality
, vol.40
, pp. 225-244
-
-
Kroh, M.1
-
23
-
-
77249147857
-
Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation.
-
Lee, K. J. (2010). Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation. American Journal of Epidemiology, 171, 1-9.
-
(2010)
American Journal of Epidemiology
, vol.171
, pp. 1-9
-
-
Lee, K.J.1
-
25
-
-
0345673603
-
A congenial overview and investigation of multiple imputation inferences under uncongeniality.
-
R. M. Groves, D. A. Dillman, J. L. Eltinge, & R. J. A. Little (Eds.), New York: Wiley.
-
Meng, X. L. (2001). A congenial overview and investigation of multiple imputation inferences under uncongeniality. In R. M. Groves, D. A. Dillman, J. L. Eltinge, & R. J. A. Little (Eds.), Survey nonresponse. New York: Wiley.
-
(2001)
Survey nonresponse.
-
-
Meng, X.L.1
-
27
-
-
0038172395
-
Tutorial on maximum likelihood estimation.
-
Myung, J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47, 90-100.
-
(2003)
Journal of Mathematical Psychology
, vol.47
, pp. 90-100
-
-
Myung, J.1
-
28
-
-
2142647296
-
What do we do with missing data? Some options for analysis of incomplete data.
-
Raghunathan, T. E. (2004). What do we do with missing data? Some options for analysis of incomplete data. Annual Review of Public Health, 25, 99-117.
-
(2004)
Annual Review of Public Health
, vol.25
, pp. 99-117
-
-
Raghunathan, T.E.1
-
29
-
-
0000555875
-
Inference for imputation estimators.
-
Robins, J. M., & Wang, N. (2000). Inference for imputation estimators. Biometrica, 87, 113-124.
-
(2000)
Biometrica
, vol.87
, pp. 113-124
-
-
Robins, J.M.1
Wang, N.2
-
33
-
-
28444485368
-
Multiple imputation in multivariate problems when the imputation and analysis models differ.
-
Schafer, J. L. (2003). Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistica Neerlandica, 57, 19-35.
-
(2003)
Statistica Neerlandica
, vol.57
, pp. 19-35
-
-
Schafer, J.L.1
-
34
-
-
85047673373
-
Missing data: Our view of the state of the art.
-
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
-
(2002)
Psychological Methods
, vol.7
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
35
-
-
80053324575
-
Biases in SPSS 12.0 missing values analysis.
-
von Hippel, P. (2004). Biases in SPSS 12.0 missing values analysis. The American Statistician, 58, 93-108.
-
(2004)
The American Statistician
, vol.58
, pp. 93-108
-
-
von Hippel, P.1
-
36
-
-
34548736509
-
Regression with missing Ys: An improved strategy for analyzing multiply imputed data.
-
von Hippel, P. (2007). Regression with missing Ys: An improved strategy for analyzing multiply imputed data. Sociological Methodology, 83-118.
-
(2007)
Sociological Methodology
, pp. 83-118
-
-
von Hippel, P.1
-
37
-
-
69149105188
-
How to impute interactions, squares, and other transformed variables.
-
von Hippel, P. (2009). How to impute interactions, squares, and other transformed variables. Sociological Methodology, 265-291.
-
(2009)
Sociological Methodology
, pp. 265-291
-
-
von Hippel, P.1
-
38
-
-
70449834993
-
The effect of auxiliary variables and multiple imputation on parameter estimation in confirmatory factor analysis.
-
Yoo, J. E. (2009). The effect of auxiliary variables and multiple imputation on parameter estimation in confirmatory factor analysis. Educational and Psychological Measurement, 69, 929-947.
-
(2009)
Educational and Psychological Measurement
, vol.69
, pp. 929-947
-
-
Yoo, J.E.1
-
39
-
-
45749110814
-
Using calibration to improve rounding in imputation.
-
Yucel, R. M., He, Y., & Zaslavsky, A. M. (2008). Using calibration to improve rounding in imputation. The American Statistician, 62, 125-129.
-
(2008)
The American Statistician
, vol.62
, pp. 125-129
-
-
Yucel, R.M.1
He, Y.2
Zaslavsky, A.M.3
-
40
-
-
80053322690
-
-
Sequential hierarchical regression imputation (SHRIMP). Unpublished manuscript, University of Massachusetts Amherst.
-
Yucel, R. M., Schenker, N., & Raghunathan, T. E. (2007). Sequential hierarchical regression imputation (SHRIMP). Unpublished manuscript, University of Massachusetts Amherst.
-
(2007)
-
-
Yucel, R.M.1
Schenker, N.2
Raghunathan, T.E.3
|