메뉴 건너뛰기




Volumn 37, Issue 2, 2011, Pages 187-216

A graph model for mutual information based clustering

Author keywords

Clustering; Cut; Graph; Mutual information

Indexed keywords

CLUSTERING; CLUSTERING PROBLEMS; COMBINATORIAL PROBLEM; CONDITIONAL PROBABILITY DISTRIBUTIONS; CONSTRAINED OPTIMIZATION PROBLEMS; CUT; DATA OBJECTS; DATA SETS; EDGE-WEIGHTED GRAPH; GRAPH; GRAPH MODEL; GRAPH-BASED; MUTUAL INFORMATIONS; STATIONARY DISTRIBUTION; TEXT CLUSTERING;

EID: 80053307397     PISSN: 09259902     EISSN: 15737675     Source Type: Journal    
DOI: 10.1007/s10844-010-0132-5     Document Type: Article
Times cited : (5)

References (46)
  • 1
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan P. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of 1998 ACM-SIGMOD (pp. 94-105). (Pubitemid 128655960)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extention of the maximum likelihood principle
    • B. N. Petrov, & F. E. Csaki (Eds.)
    • Akaike, H. (1973). Information theory and an extention of the maximum likelihood principle. In B. N. Petrov, & F. E. Csaki (Eds.), 2nd international symposium on information theory (pp. 267-281).
    • (1973) 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 4
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • 10.1162/089976603321780317
    • M Belkin P Niyogi 2002 Laplacian eigenmaps for dimensionality reduction and data representation Neural Computation 15 1373 1396 10.1162/ 089976603321780317
    • (2002) Neural Computation , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • 501537 0364.62022
    • A Dempster N Laird D Rubin 1977 Maximum likelihood from incomplete data via the EM algorithm Journal of the Royal Statistical Society 39 2 1 38 501537 0364.62022
    • (1977) Journal of the Royal Statistical Society , vol.39 , Issue.2 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 8
    • 77952375075 scopus 로고    scopus 로고
    • Information-theoretic co-clustering
    • Dhillon, J., Mallela, S., & Modha, D. (2003). Information-theoretic co-clustering. In KDD 2003 (pp. 89-98).
    • (2003) KDD 2003 , pp. 89-98
    • Dhillon, J.1    Mallela, S.2    Modha, D.3
  • 9
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • DOI 10.1023/A:1007612920971
    • J Dhillon D Modha 2001 Concept decompositions for large sparse text data using clustering Machine Learning 42 143 175 0970.68167 10.1023/A:1007612920971 (Pubitemid 32872402)
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 13
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of KDD-96 (pp. 226-231).
    • (1996) Proceedings of KDD-96 , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 15
    • 2542613410 scopus 로고    scopus 로고
    • Lawrence Erlbaum Associates
    • Ghosh, J. (2003). Scalable clustering (pp. 341-364). Lawrence Erlbaum Associates.
    • (2003) Scalable Clustering , pp. 341-364
    • Ghosh, J.1
  • 16
    • 0004173623 scopus 로고
    • Efficient algorithms for divisive hierarchical clustering with the diameter criterion
    • 1114217 0739.62050 10.1007/BF02616245
    • A Guénoche P Hansen B Jaumard 1991 Efficient algorithms for divisive hierarchical clustering with the diameter criterion Journal of Classification 8 5 30 1114217 0739.62050 10.1007/BF02616245
    • (1991) Journal of Classification , vol.8 , pp. 5-30
    • Guénoche, A.1    Hansen, P.2    Jaumard, B.3
  • 17
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • Guha, S., Rastogi, R., & Shim, K. (1998). Cure: An efficient clustering algorithm for large databases. In Proceedings of the ACM SIGMOD conference (pp. 73-84). (Pubitemid 128655958)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 18
    • 74849117130 scopus 로고    scopus 로고
    • Neighborhood graphs for indexing and retrieving multidimensional data
    • 10.1007/s10844-009-0081-z
    • H Hacid T Yoshida 2010 Neighborhood graphs for indexing and retrieving multidimensional data Journal of Intelligent Information Systems 34 93-11 10.1007/s10844-009-0081-z
    • (2010) Journal of Intelligent Information Systems , vol.34 , pp. 93-11
    • Hacid, H.1    Yoshida, T.2
  • 19
    • 0348096294 scopus 로고    scopus 로고
    • Clustering validity checking methods: Part II
    • 10.1145/601858.601862
    • M Halkidi Y Batistakis M Vazirgiannis 2002 Clustering validity checking methods: Part II ACM SIGMOD Record 31 3 19 27 10.1145/601858.601862
    • (2002) ACM SIGMOD Record , vol.31 , Issue.3 , pp. 19-27
    • Halkidi, M.1    Batistakis, Y.2    Vazirgiannis, M.3
  • 21
    • 0001138328 scopus 로고
    • Algorithm AS136: A k-means clustering algorithm
    • 0447.62062 10.2307/2346830
    • J Hartigan M Wong 1979 Algorithm AS136: A k-means clustering algorithm Journal of Applied Statistics 28 100 108 0447.62062 10.2307/2346830
    • (1979) Journal of Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.1    Wong, M.2
  • 22
    • 0034515528 scopus 로고    scopus 로고
    • Clustering algorithm based on graph connectivity
    • DOI 10.1016/S0020-0190(00)00142-3
    • E Hartuv R Shamir 2000 A clustering algorithm based on graph connectivity Information Processing Letters 76 175 181 1807676 0996.68525 10.1016/S0020-0190(00)00142-3 (Pubitemid 32035371)
    • (2000) Information Processing Letters , vol.76 , Issue.4-6 , pp. 175-181
    • Hartuv, E.1    Shamir, R.2
  • 23
    • 9344236520 scopus 로고    scopus 로고
    • The b-chromatic number of a graph
    • 1670155 0933.05051 10.1016/S0166-218X(98)00146-2
    • W Irving DF Manlov 1999 The b-chromatic number of a graph Discrete Applied Mathematics 91 127 141 1670155 0933.05051 10.1016/S0166-218X(98)00146-2
    • (1999) Discrete Applied Mathematics , vol.91 , pp. 127-141
    • Irving, W.1    Manlov, D.F.2
  • 24
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: A review
    • 10.1145/331499.331504
    • A Jain M Murty T Flynn 1999 Data clustering: A review ACM Computing Surveys 31 264 323 10.1145/331499.331504
    • (1999) ACM Computing Surveys , vol.31 , pp. 264-323
    • Jain, A.1    Murty, M.2    Flynn, T.3
  • 26
    • 0036937614 scopus 로고    scopus 로고
    • Performance evaluation of some clustering algorithms and validity indices
    • 10.1109/TPAMI.2002.1114856
    • U Maulik S Bandyopadhyay 2002 Performance evaluation of some clustering algorithms and validity indices IEEE Transactions On Pattern Analysis and Machine Intelligence 24 12 1650 1654 10.1109/TPAMI.2002.1114856
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.12 , pp. 1650-1654
    • Maulik, U.1    Bandyopadhyay, S.2
  • 27
    • 77951181778 scopus 로고    scopus 로고
    • A new clustering algorithm based on regions of influence with self-detection of the best number of clusters
    • Muhlenbach, F., & Lallich, S. (2009). A new clustering algorithm based on regions of influence with self-detection of the best number of clusters. In Proc. of 2009 IEEE international conference on data mining (ICDM'09) (pp. 884-889).
    • (2009) Proc. of 2009 IEEE International Conference on Data Mining (ICDM'09) , pp. 884-889
    • Muhlenbach, F.1    Lallich, S.2
  • 28
    • 0036709106 scopus 로고    scopus 로고
    • CLARANS: A method for clustering objects for spatial data mining
    • DOI 10.1109/TKDE.2002.1033770
    • R Ng J Han 2002 Clarans: a method for clustering objects for spatial data mining IEEE Transactions on Knowledge and Data Engineering 14 5 1003 1016 10.1109/TKDE.2002.1033770 (Pubitemid 35242611)
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.T.1    Han, J.2
  • 29
    • 78049253570 scopus 로고    scopus 로고
    • Toward improving re-coloring based clustering with graph b-coloring
    • Ogino, H., & Yoshida, T. (2010). Toward improving re-coloring based clustering with graph b-coloring. In Proceedings of PRICAI-2010 (pp. 206-218).
    • (2010) Proceedings of PRICAI-2010 , pp. 206-218
    • Ogino, H.1    Yoshida, T.2
  • 31
    • 33744584654 scopus 로고
    • Induction of decision trees
    • JR Quinlan 1986 Induction of decision trees Machine Learning 1 81 106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 33
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • DOI 10.1016/0005-1098(78)90005-5
    • J Rissanen 1978 Modeling by shortest data description methods in instance-based learning and data mining Automatica 14 465 471 0418.93079 10.1016/0005-1098(78)90005-5 (Pubitemid 9397141)
    • (1978) Automatica , vol.14 , Issue.5 , pp. 465-471
    • Rissanen, J.1
  • 34
    • 0004009855 scopus 로고
    • Technical Report CS-TR-495-95, Princeton University
    • Ristad, E. (1995). A natural law of succession. Technical Report CS-TR-495-95, Princeton University.
    • (1995) A Natural Law of Succession
    • Ristad, E.1
  • 35
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S Roweis L Saul 2000 Nonlinear dimensionality reduction by locally linear embedding Science 290 2323 2326 10.1126/science.290.5500.2323 (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 37
    • 0036993190 scopus 로고    scopus 로고
    • Unsupervised document classification using sequential information maximization
    • Slonim, N., Friedman, N., & Tishby, N. (2002). Unsupervised document classification using sequential information maximization. In SIGIR-02 (pp. 129-136).
    • (2002) SIGIR-02 , pp. 129-136
    • Slonim, N.1    Friedman, N.2    Tishby, N.3
  • 39
    • 0031176702 scopus 로고    scopus 로고
    • A simple min-cut algorithm
    • M Stoer F Wagner 1997 A simple min-cut algorithm Journal of ACM 44 4 585 591 1481316 0891.68071 10.1145/263867.263872 (Pubitemid 127617705)
    • (1997) Journal of the ACM , vol.44 , Issue.4 , pp. 585-591
    • Stoer, M.1    Wagner, F.2
  • 40
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-A knowledge reuse framework for combining multiple partitions
    • 1991087
    • A Strehl J Ghosh 2002 Cluster ensembles-A knowledge reuse framework for combining multiple partitions Journal of Machine Learning Research Journal of Machine Learning Research, 3 3 583 617 1991087
    • (2002) Journal of Machine Learning Research , vol.3 , Issue.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 41
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J Tenenbaum J de Silva J Langford 2000 A global geometric framework for nonlinear dimensionality reduction Science 290 22 2319 2323 10.1126/science.290. 5500.2319 (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 43
    • 18244371055 scopus 로고    scopus 로고
    • Geometric proximity graphs for improving nearest neighbor methods in instance-based learning and data mining
    • DOI 10.1142/S0218195905001622, PII S0218195905001622
    • GT Toussaint 2005 Geometric proximity graphs for improving nearest neighbor methods in instance-based learning and data mining International Journal of Computational Geometry Applications 15 2 101 150 2137722 1067.68166 10.1142/S0218195905001622 (Pubitemid 40630512)
    • (2005) International Journal of Computational Geometry and Applications , vol.15 , Issue.2 , pp. 101-150
    • Toussaint, G.1
  • 44
    • 0019999522 scopus 로고
    • Graph theoretical clustering based on limited neighbourhood sets
    • DOI 10.1016/0031-3203(82)90069-3
    • R Urquhart 1982 Graph theoretical clustering based on limited neighbourhood sets Pattern Recognition 15 3 173 187 2604956 0483.62050 10.1016/0031-3203(82)90069-3 (Pubitemid 12517467)
    • (1982) Pattern Recognition , vol.15 , Issue.3 , pp. 173-187
    • Urquhart Roderick1
  • 45
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • 2409803 10.1007/s11222-007-9033-z
    • U von Luxburg 2007 A tutorial on spectral clustering Statistics and Computing 17 4 395 416 2409803 10.1007/s11222-007-9033-z
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 46
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing gestalt clusters
    • 0264.68040 10.1109/T-C.1971.223083
    • CT Zahn 1971 Graph-theoretical methods for detecting and describing gestalt clusters IEEE Transactions on Computers 20 68 86 0264.68040 10.1109/T-C.1971.223083
    • (1971) IEEE Transactions on Computers , vol.20 , pp. 68-86
    • Zahn, C.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.