메뉴 건너뛰기




Volumn 36, Issue 10, 2011, Pages 524-531

Hammering out details: Regulating metal levels in eukaryotes

Author keywords

[No Author keywords available]

Indexed keywords

COPPER; IRON; IRON SULFUR PROTEIN; METAL ION; METAL RESPONSE ELEMENT BINDING TRANSCRIPTION FACTOR 1; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR BZIP19; TRANSCRIPTION FACTOR BZIP23; TRANSCRIPTION FACTOR FEP1; TRANSCRIPTION FACTOR GRX4; TRANSCRIPTION FACTOR MAC1; TRANSCRIPTION FACTOR YAP5; TRANSCRIPTION FACTOR ZAP1; UNCLASSIFIED DRUG; ZINC; ZINC FINGER PROTEIN;

EID: 80053303115     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2011.07.002     Document Type: Review
Times cited : (50)

References (70)
  • 1
    • 67650550797 scopus 로고    scopus 로고
    • Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae
    • Eide D.J. Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 2009, 284:18565-18569.
    • (2009) J. Biol. Chem. , vol.284 , pp. 18565-18569
    • Eide, D.J.1
  • 2
    • 61549092140 scopus 로고    scopus 로고
    • New roles for copper metabolism in cell proliferation, signaling, and disease
    • Turski M.L., Thiele D.J. New roles for copper metabolism in cell proliferation, signaling, and disease. J. Biol. Chem. 2009, 284:717-721.
    • (2009) J. Biol. Chem. , vol.284 , pp. 717-721
    • Turski, M.L.1    Thiele, D.J.2
  • 3
    • 77954249308 scopus 로고    scopus 로고
    • Two to tango: regulation of mammalian iron metabolism
    • Hentze M.W., et al. Two to tango: regulation of mammalian iron metabolism. Cell 2010, 142:24-38.
    • (2010) Cell , vol.142 , pp. 24-38
    • Hentze, M.W.1
  • 4
    • 68949170348 scopus 로고    scopus 로고
    • Metalloproteins and metal sensing
    • Waldron K.J., et al. Metalloproteins and metal sensing. Nature 2009, 460:823-830.
    • (2009) Nature , vol.460 , pp. 823-830
    • Waldron, K.J.1
  • 5
    • 55949095393 scopus 로고    scopus 로고
    • Zinc transporters ZnT1 (Slc30a1), Zip8 (Slc39a8), and Zip10 (Slc39a10) in mouse red blood cells are differentially regulated during erythroid development and by dietary zinc deficiency
    • Ryu M.S., et al. Zinc transporters ZnT1 (Slc30a1), Zip8 (Slc39a8), and Zip10 (Slc39a10) in mouse red blood cells are differentially regulated during erythroid development and by dietary zinc deficiency. J. Nutr. 2008, 138:2076-2083.
    • (2008) J. Nutr. , vol.138 , pp. 2076-2083
    • Ryu, M.S.1
  • 6
    • 77953385066 scopus 로고    scopus 로고
    • Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency
    • Assuncao A.G., et al. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:10296-10301.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 10296-10301
    • Assuncao, A.G.1
  • 7
    • 77957566159 scopus 로고    scopus 로고
    • Dynamic transcriptomic profiles of zebrafish gills in response to zinc supplementation
    • Zheng D., et al. Dynamic transcriptomic profiles of zebrafish gills in response to zinc supplementation. BMC Genomics 2010, 11:553.
    • (2010) BMC Genomics , vol.11 , pp. 553
    • Zheng, D.1
  • 8
    • 40949095571 scopus 로고    scopus 로고
    • Response of Schizosaccharomyces pombe to zinc deficiency
    • Dainty S.J., et al. Response of Schizosaccharomyces pombe to zinc deficiency. Eukaryot. Cell 2008, 7:454-464.
    • (2008) Eukaryot. Cell , vol.7 , pp. 454-464
    • Dainty, S.J.1
  • 9
    • 59149085523 scopus 로고    scopus 로고
    • Mechanisms of mammalian zinc-regulated gene expression
    • Jackson K.A., et al. Mechanisms of mammalian zinc-regulated gene expression. Biochem. Soc. Trans. 2008, 36:1262-1266.
    • (2008) Biochem. Soc. Trans. , vol.36 , pp. 1262-1266
    • Jackson, K.A.1
  • 10
    • 51749088801 scopus 로고    scopus 로고
    • Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae
    • Wu C.Y., et al. Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae. BMC Genomics 2008, 9:370.
    • (2008) BMC Genomics , vol.9 , pp. 370
    • Wu, C.Y.1
  • 11
    • 33845698923 scopus 로고    scopus 로고
    • Repression of ADH1 and ADH3 during zinc deficiency by Zap1-induced intergenic RNA transcripts
    • Bird A.J., et al. Repression of ADH1 and ADH3 during zinc deficiency by Zap1-induced intergenic RNA transcripts. EMBO J. 2006, 25:5726-5734.
    • (2006) EMBO J. , vol.25 , pp. 5726-5734
    • Bird, A.J.1
  • 12
    • 0141864674 scopus 로고    scopus 로고
    • 2+ sensors to regulate transcriptional activation domain function
    • 2+ sensors to regulate transcriptional activation domain function. EMBO J. 2003, 22:5137-5146.
    • (2003) EMBO J. , vol.22 , pp. 5137-5146
    • Bird, A.J.1
  • 13
    • 33745051531 scopus 로고    scopus 로고
    • Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET
    • Qiao W., et al. Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:8674-8679.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 8674-8679
    • Qiao, W.1
  • 14
    • 33644828992 scopus 로고    scopus 로고
    • Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae
    • Wang Z., et al. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae. J. Mol. Biol. 2006, 357:1167-1183.
    • (2006) J. Mol. Biol. , vol.357 , pp. 1167-1183
    • Wang, Z.1
  • 15
    • 22644436960 scopus 로고    scopus 로고
    • Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status
    • Herbig A., et al. Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status. Mol. Microbiol. 2005, 57:834-846.
    • (2005) Mol. Microbiol. , vol.57 , pp. 834-846
    • Herbig, A.1
  • 16
    • 79953198271 scopus 로고    scopus 로고
    • Roles of two activation domains in Zap1 in the response to zinc deficiency in Saccharomyces cerevisiae
    • Frey A.G., Eide D.J. Roles of two activation domains in Zap1 in the response to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 2011, 286:6844-6854.
    • (2011) J. Biol. Chem. , vol.286 , pp. 6844-6854
    • Frey, A.G.1    Eide, D.J.2
  • 17
    • 34447105299 scopus 로고    scopus 로고
    • Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1)
    • Laity J.H., Andrews G.K. Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch. Biochem. Biophys. 2007, 463:201-210.
    • (2007) Arch. Biochem. Biophys. , vol.463 , pp. 201-210
    • Laity, J.H.1    Andrews, G.K.2
  • 18
    • 1242277806 scopus 로고    scopus 로고
    • Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells
    • Rutherford J.C., Bird A.J. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot. Cell 2004, 3:1-13.
    • (2004) Eukaryot. Cell , vol.3 , pp. 1-13
    • Rutherford, J.C.1    Bird, A.J.2
  • 19
    • 0242637400 scopus 로고    scopus 로고
    • 2 in vitro is modulated by metallothionein
    • 2 in vitro is modulated by metallothionein. Mol. Cell. Biol. 2003, 23:8471-8485.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 8471-8485
    • Zhang, B.1
  • 20
    • 76749126469 scopus 로고    scopus 로고
    • Metal transcription factor-1 regulation via MREs in the transcribed regions of selenoprotein H and other metal-responsive genes
    • Stoytcheva Z.R., et al. Metal transcription factor-1 regulation via MREs in the transcribed regions of selenoprotein H and other metal-responsive genes. Biochim. Biophys. Acta. 2010, 1800:416-424.
    • (2010) Biochim. Biophys. Acta. , vol.1800 , pp. 416-424
    • Stoytcheva, Z.R.1
  • 21
    • 78649470197 scopus 로고    scopus 로고
    • Induction of FPN1 transcription by MTF-1 reveals a role for ferroportin in transition metal efflux
    • Troadec M.B., et al. Induction of FPN1 transcription by MTF-1 reveals a role for ferroportin in transition metal efflux. Blood 2010, 116:4657-4664.
    • (2010) Blood , vol.116 , pp. 4657-4664
    • Troadec, M.B.1
  • 22
    • 71949121492 scopus 로고    scopus 로고
    • Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain
    • Lindert U., et al. Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain. Mol. Cell. Biol. 2009, 29:6283-6293.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 6283-6293
    • Lindert, U.1
  • 23
    • 77953716761 scopus 로고    scopus 로고
    • The metal-responsive transcription factor-1 protein is elevated in human tumors
    • Shi Y., et al. The metal-responsive transcription factor-1 protein is elevated in human tumors. Cancer Biol. Ther. 2010, 9:469-476.
    • (2010) Cancer Biol. Ther. , vol.9 , pp. 469-476
    • Shi, Y.1
  • 24
    • 78650719200 scopus 로고    scopus 로고
    • Zinc overload enhances APP cleavage and Aβ deposition in the Alzheimer mouse brain
    • Wang C.Y., et al. Zinc overload enhances APP cleavage and Aβ deposition in the Alzheimer mouse brain. PLoS ONE 2010, 5:e15349.
    • (2010) PLoS ONE , vol.5
    • Wang, C.Y.1
  • 25
    • 35348925016 scopus 로고    scopus 로고
    • FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii
    • Allen M.D., et al. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot. Cell 2007, 6:1841-1852.
    • (2007) Eukaryot. Cell , vol.6 , pp. 1841-1852
    • Allen, M.D.1
  • 26
    • 18444408674 scopus 로고    scopus 로고
    • The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response
    • Colangelo E.P., Guerinot M.L. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 2004, 16:3400-3412.
    • (2004) Plant Cell , vol.16 , pp. 3400-3412
    • Colangelo, E.P.1    Guerinot, M.L.2
  • 27
    • 77956819375 scopus 로고    scopus 로고
    • The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots
    • Long T.A., et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 2010, 22:2219-2236.
    • (2010) Plant Cell , vol.22 , pp. 2219-2236
    • Long, T.A.1
  • 28
    • 70350657148 scopus 로고    scopus 로고
    • Iron acquisition and transcriptional regulation
    • Kaplan C.D., Kaplan J. Iron acquisition and transcriptional regulation. Chem. Rev. 2009, 109:4536-4552.
    • (2009) Chem. Rev. , vol.109 , pp. 4536-4552
    • Kaplan, C.D.1    Kaplan, J.2
  • 29
    • 11844257593 scopus 로고    scopus 로고
    • Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation
    • Puig S., et al. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 2005, 120:99-110.
    • (2005) Cell , vol.120 , pp. 99-110
    • Puig, S.1
  • 30
    • 44349183685 scopus 로고    scopus 로고
    • Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency
    • Puig S., et al. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency. Cell. Metab. 2008, 7:555-564.
    • (2008) Cell. Metab. , vol.7 , pp. 555-564
    • Puig, S.1
  • 31
    • 33751174095 scopus 로고    scopus 로고
    • A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe
    • Mercier A., et al. A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe. Eukaryot. Cell 2006, 5:1866-1881.
    • (2006) Eukaryot. Cell , vol.5 , pp. 1866-1881
    • Mercier, A.1
  • 32
    • 34547763678 scopus 로고    scopus 로고
    • Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae
    • Ueta R., et al. Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. Mol. Biol. Cell. 2007, 18:2980-2990.
    • (2007) Mol. Biol. Cell. , vol.18 , pp. 2980-2990
    • Ueta, R.1
  • 33
    • 15444371876 scopus 로고    scopus 로고
    • Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis
    • Rutherford J.C., et al. Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J. Biol. Chem. 2005, 280:10135-10140.
    • (2005) J. Biol. Chem. , vol.280 , pp. 10135-10140
    • Rutherford, J.C.1
  • 34
    • 3142667831 scopus 로고    scopus 로고
    • Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis
    • Chen O.S., et al. Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis. J. Biol. Chem. 2004, 279:29513-29518.
    • (2004) J. Biol. Chem. , vol.279 , pp. 29513-29518
    • Chen, O.S.1
  • 35
    • 33745872884 scopus 로고    scopus 로고
    • Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae
    • Ojeda L., et al. Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 2006, 281:17661-17669.
    • (2006) J. Biol. Chem. , vol.281 , pp. 17661-17669
    • Ojeda, L.1
  • 36
    • 33751529756 scopus 로고    scopus 로고
    • Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae
    • Pujol-Carrion N., et al. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J. Cell Sci. 2006, 119:4554-4564.
    • (2006) J. Cell Sci. , vol.119 , pp. 4554-4564
    • Pujol-Carrion, N.1
  • 37
    • 77957674907 scopus 로고    scopus 로고
    • Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster
    • Muhlenhoff U., et al. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab. 2010, 12:373-385.
    • (2010) Cell Metab. , vol.12 , pp. 373-385
    • Muhlenhoff, U.1
  • 38
    • 67650077717 scopus 로고    scopus 로고
    • Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin
    • Iwema T., et al. Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin. Biochemistry 2009, 48:6041-6043.
    • (2009) Biochemistry , vol.48 , pp. 6041-6043
    • Iwema, T.1
  • 39
    • 44849098197 scopus 로고    scopus 로고
    • Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis
    • Kumanovics A., et al. Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J. Biol. Chem. 2008, 283:10276-10286.
    • (2008) J. Biol. Chem. , vol.283 , pp. 10276-10286
    • Kumanovics, A.1
  • 40
    • 78650949287 scopus 로고    scopus 로고
    • Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast
    • Li H., et al. Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast. J. Biol. Chem. 2011, 286:867-876.
    • (2011) J. Biol. Chem. , vol.286 , pp. 867-876
    • Li, H.1
  • 41
    • 70350070125 scopus 로고    scopus 로고
    • The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation
    • Li H., et al. The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 2009, 48:9569-9581.
    • (2009) Biochemistry , vol.48 , pp. 9569-9581
    • Li, H.1
  • 42
    • 67749116417 scopus 로고    scopus 로고
    • Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1
    • Mercier A., Labbe S. Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1. J. Biol. Chem. 2009, 284:20249-20262.
    • (2009) J. Biol. Chem. , vol.284 , pp. 20249-20262
    • Mercier, A.1    Labbe, S.2
  • 43
    • 65149090846 scopus 로고    scopus 로고
    • Facing the challenges of Cu, Fe and Zn homeostasis in plants
    • Palmer C.M., Guerinot M.L. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat. Chem. Biol. 2009, 5:333-340.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 333-340
    • Palmer, C.M.1    Guerinot, M.L.2
  • 44
    • 38149059054 scopus 로고    scopus 로고
    • An iron enhancer element in the FTN-1 gene directs iron-dependent expression in Caenorhabditis elegans intestine
    • Romney S.J., et al. An iron enhancer element in the FTN-1 gene directs iron-dependent expression in Caenorhabditis elegans intestine. J. Biol. Chem. 2008, 283:716-725.
    • (2008) J. Biol. Chem. , vol.283 , pp. 716-725
    • Romney, S.J.1
  • 45
    • 38949162530 scopus 로고    scopus 로고
    • Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast
    • Li L., et al. Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol. Cell. Biol. 2008, 28:1326-1337.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 1326-1337
    • Li, L.1
  • 46
    • 0023884191 scopus 로고
    • Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels
    • White K., Munro H.N. Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels. J. Biol. Chem. 1988, 263:8938-8942.
    • (1988) J. Biol. Chem. , vol.263 , pp. 8938-8942
    • White, K.1    Munro, H.N.2
  • 47
    • 0033571744 scopus 로고    scopus 로고
    • Transcriptional control is relevant in the modulation of mosquito ferritin synthesis by iron
    • Pham D.Q., et al. Transcriptional control is relevant in the modulation of mosquito ferritin synthesis by iron. Eur. J. Biochem. 1999, 266:236-240.
    • (1999) Eur. J. Biochem. , vol.266 , pp. 236-240
    • Pham, D.Q.1
  • 48
    • 79952779937 scopus 로고    scopus 로고
    • Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions
    • Lin H., et al. Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions. J. Biol. Chem. 2011, 286:3851-3862.
    • (2011) J. Biol. Chem. , vol.286 , pp. 3851-3862
    • Lin, H.1
  • 49
    • 0037151108 scopus 로고    scopus 로고
    • Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe
    • Pelletier B., et al. Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe. J. Biol. Chem. 2002, 277:22950-22958.
    • (2002) J. Biol. Chem. , vol.277 , pp. 22950-22958
    • Pelletier, B.1
  • 50
    • 64749088644 scopus 로고    scopus 로고
    • Iron activates in vivo DNA binding of Schizosaccharomyces pombe transcription factor Fep1 through its amino-terminal region
    • Jbel M., et al. Iron activates in vivo DNA binding of Schizosaccharomyces pombe transcription factor Fep1 through its amino-terminal region. Eukaryot. Cell 2009, 8:649-664.
    • (2009) Eukaryot. Cell , vol.8 , pp. 649-664
    • Jbel, M.1
  • 51
    • 46849120759 scopus 로고    scopus 로고
    • Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen Histoplasma capsulatum
    • Chao L.Y., et al. Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen Histoplasma capsulatum. Biochemistry 2008, 47:7274-7283.
    • (2008) Biochemistry , vol.47 , pp. 7274-7283
    • Chao, L.Y.1
  • 52
    • 79956029734 scopus 로고    scopus 로고
    • Grx4 monothiol glutaredoxin is required for iron limitation-dependent inhibition of Fep1
    • Jbel M., et al. Grx4 monothiol glutaredoxin is required for iron limitation-dependent inhibition of Fep1. Eukaryot. Cell 2011, 10:629-645.
    • (2011) Eukaryot. Cell , vol.10 , pp. 629-645
    • Jbel, M.1
  • 53
    • 79956202651 scopus 로고    scopus 로고
    • Multi-domain CGFS-type glutaredoxin Grx4 regulates iron homeostasis via direct interaction with a repressor Fep1 in fission yeast
    • Kim K.D., et al. Multi-domain CGFS-type glutaredoxin Grx4 regulates iron homeostasis via direct interaction with a repressor Fep1 in fission yeast. Biochem. Biophys. Res. Commun. 2011, 408:609-614.
    • (2011) Biochem. Biophys. Res. Commun. , vol.408 , pp. 609-614
    • Kim, K.D.1
  • 54
    • 66249112833 scopus 로고    scopus 로고
    • The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity
    • Macomber L., Imlay J.A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:8344-8349.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 8344-8349
    • Macomber, L.1    Imlay, J.A.2
  • 55
    • 1842453678 scopus 로고    scopus 로고
    • From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms
    • Rees E.M., Thiele D.J. From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms. Curr. Opin. Microbiol. 2004, 7:175-184.
    • (2004) Curr. Opin. Microbiol. , vol.7 , pp. 175-184
    • Rees, E.M.1    Thiele, D.J.2
  • 56
    • 79957609529 scopus 로고    scopus 로고
    • Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps
    • Castruita M., et al. Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 2011, 23:1273-1292.
    • (2011) Plant Cell , vol.23 , pp. 1273-1292
    • Castruita, M.1
  • 57
    • 17444417126 scopus 로고    scopus 로고
    • Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes
    • Selvaraj A., et al. Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev. 2005, 19:891-896.
    • (2005) Genes Dev. , vol.19 , pp. 891-896
    • Selvaraj, A.1
  • 58
    • 0032530720 scopus 로고    scopus 로고
    • Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae
    • Jensen L.T., Winge D.R. Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO J. 1998, 17:5400-5408.
    • (1998) EMBO J. , vol.17 , pp. 5400-5408
    • Jensen, L.T.1    Winge, D.R.2
  • 59
    • 58649108110 scopus 로고    scopus 로고
    • Transcriptional activation in yeast in response to copper deficiency involves copper-zinc superoxide dismutase
    • Wood L.K., Thiele D.J. Transcriptional activation in yeast in response to copper deficiency involves copper-zinc superoxide dismutase. J. Biol. Chem. 2009, 284:404-413.
    • (2009) J. Biol. Chem. , vol.284 , pp. 404-413
    • Wood, L.K.1    Thiele, D.J.2
  • 60
    • 79551650614 scopus 로고    scopus 로고
    • The CRR1 nutritional copper sensor in Chlamydomonas contains two distinct metal-responsive domains
    • Sommer F., et al. The CRR1 nutritional copper sensor in Chlamydomonas contains two distinct metal-responsive domains. Plant Cell 2010, 22:4098-4113.
    • (2010) Plant Cell , vol.22 , pp. 4098-4113
    • Sommer, F.1
  • 61
    • 62549146646 scopus 로고    scopus 로고
    • SQUAMOSA promoter binding protein-like 7 is a central regulator for copper homeostasis in Arabidopsis
    • Yamasaki H., et al. SQUAMOSA promoter binding protein-like 7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 2009, 21:347-361.
    • (2009) Plant Cell , vol.21 , pp. 347-361
    • Yamasaki, H.1
  • 62
    • 47049120791 scopus 로고    scopus 로고
    • MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis
    • Abdel-Ghany S.E., Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J. Biol. Chem. 2008, 283:15932-15945.
    • (2008) J. Biol. Chem. , vol.283 , pp. 15932-15945
    • Abdel-Ghany, S.E.1    Pilon, M.2
  • 63
    • 0038529682 scopus 로고    scopus 로고
    • The Schizosaccharomyces pombe Cuf1 is composed of functional modules from two distinct classes of copper metalloregulatory transcription factors
    • Beaudoin J., et al. The Schizosaccharomyces pombe Cuf1 is composed of functional modules from two distinct classes of copper metalloregulatory transcription factors. J. Biol. Chem. 2003, 278:14565-14577.
    • (2003) J. Biol. Chem. , vol.278 , pp. 14565-14577
    • Beaudoin, J.1
  • 64
    • 33750219660 scopus 로고    scopus 로고
    • Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc
    • Yepiskoposyan H., et al. Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Res. 2006, 34:4866-4877.
    • (2006) Nucleic Acids Res. , vol.34 , pp. 4866-4877
    • Yepiskoposyan, H.1
  • 65
    • 44349173738 scopus 로고    scopus 로고
    • Copper sensing function of Drosophila metal-responsive transcription factor-1 is mediated by a tetranuclear Cu(I) cluster
    • Chen X., et al. Copper sensing function of Drosophila metal-responsive transcription factor-1 is mediated by a tetranuclear Cu(I) cluster. Nucleic Acids Res. 2008, 36:3128-3138.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 3128-3138
    • Chen, X.1
  • 66
    • 54549088946 scopus 로고    scopus 로고
    • Protein-folding location can regulate manganese-binding versus copper- or zinc-binding
    • Tottey S., et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 2008, 455:1138-1142.
    • (2008) Nature , vol.455 , pp. 1138-1142
    • Tottey, S.1
  • 67
    • 33646155960 scopus 로고    scopus 로고
    • The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2
    • Yang M., et al. The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2. EMBO J. 2006, 25:1775-1783.
    • (2006) EMBO J. , vol.25 , pp. 1775-1783
    • Yang, M.1
  • 68
    • 43049150678 scopus 로고    scopus 로고
    • Metals in Alzheimer's and Parkinson's diseases
    • Barnham K.J., Bush A.I. Metals in Alzheimer's and Parkinson's diseases. Curr. Opin. Chem. Biol. 2008, 12:222-228.
    • (2008) Curr. Opin. Chem. Biol. , vol.12 , pp. 222-228
    • Barnham, K.J.1    Bush, A.I.2
  • 69
    • 36749037264 scopus 로고    scopus 로고
    • Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression
    • Li M., et al. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:18636-18641.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 18636-18641
    • Li, M.1
  • 70
    • 40249095934 scopus 로고    scopus 로고
    • FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis
    • Yuan Y., et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res. 2008, 18:385-397.
    • (2008) Cell Res. , vol.18 , pp. 385-397
    • Yuan, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.