-
1
-
-
67650550797
-
Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae
-
Eide D.J. Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 2009, 284:18565-18569.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 18565-18569
-
-
Eide, D.J.1
-
2
-
-
61549092140
-
New roles for copper metabolism in cell proliferation, signaling, and disease
-
Turski M.L., Thiele D.J. New roles for copper metabolism in cell proliferation, signaling, and disease. J. Biol. Chem. 2009, 284:717-721.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 717-721
-
-
Turski, M.L.1
Thiele, D.J.2
-
3
-
-
77954249308
-
Two to tango: regulation of mammalian iron metabolism
-
Hentze M.W., et al. Two to tango: regulation of mammalian iron metabolism. Cell 2010, 142:24-38.
-
(2010)
Cell
, vol.142
, pp. 24-38
-
-
Hentze, M.W.1
-
4
-
-
68949170348
-
Metalloproteins and metal sensing
-
Waldron K.J., et al. Metalloproteins and metal sensing. Nature 2009, 460:823-830.
-
(2009)
Nature
, vol.460
, pp. 823-830
-
-
Waldron, K.J.1
-
5
-
-
55949095393
-
Zinc transporters ZnT1 (Slc30a1), Zip8 (Slc39a8), and Zip10 (Slc39a10) in mouse red blood cells are differentially regulated during erythroid development and by dietary zinc deficiency
-
Ryu M.S., et al. Zinc transporters ZnT1 (Slc30a1), Zip8 (Slc39a8), and Zip10 (Slc39a10) in mouse red blood cells are differentially regulated during erythroid development and by dietary zinc deficiency. J. Nutr. 2008, 138:2076-2083.
-
(2008)
J. Nutr.
, vol.138
, pp. 2076-2083
-
-
Ryu, M.S.1
-
6
-
-
77953385066
-
Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency
-
Assuncao A.G., et al. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:10296-10301.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 10296-10301
-
-
Assuncao, A.G.1
-
7
-
-
77957566159
-
Dynamic transcriptomic profiles of zebrafish gills in response to zinc supplementation
-
Zheng D., et al. Dynamic transcriptomic profiles of zebrafish gills in response to zinc supplementation. BMC Genomics 2010, 11:553.
-
(2010)
BMC Genomics
, vol.11
, pp. 553
-
-
Zheng, D.1
-
8
-
-
40949095571
-
Response of Schizosaccharomyces pombe to zinc deficiency
-
Dainty S.J., et al. Response of Schizosaccharomyces pombe to zinc deficiency. Eukaryot. Cell 2008, 7:454-464.
-
(2008)
Eukaryot. Cell
, vol.7
, pp. 454-464
-
-
Dainty, S.J.1
-
9
-
-
59149085523
-
Mechanisms of mammalian zinc-regulated gene expression
-
Jackson K.A., et al. Mechanisms of mammalian zinc-regulated gene expression. Biochem. Soc. Trans. 2008, 36:1262-1266.
-
(2008)
Biochem. Soc. Trans.
, vol.36
, pp. 1262-1266
-
-
Jackson, K.A.1
-
10
-
-
51749088801
-
Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae
-
Wu C.Y., et al. Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae. BMC Genomics 2008, 9:370.
-
(2008)
BMC Genomics
, vol.9
, pp. 370
-
-
Wu, C.Y.1
-
11
-
-
33845698923
-
Repression of ADH1 and ADH3 during zinc deficiency by Zap1-induced intergenic RNA transcripts
-
Bird A.J., et al. Repression of ADH1 and ADH3 during zinc deficiency by Zap1-induced intergenic RNA transcripts. EMBO J. 2006, 25:5726-5734.
-
(2006)
EMBO J.
, vol.25
, pp. 5726-5734
-
-
Bird, A.J.1
-
12
-
-
0141864674
-
2+ sensors to regulate transcriptional activation domain function
-
2+ sensors to regulate transcriptional activation domain function. EMBO J. 2003, 22:5137-5146.
-
(2003)
EMBO J.
, vol.22
, pp. 5137-5146
-
-
Bird, A.J.1
-
13
-
-
33745051531
-
Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET
-
Qiao W., et al. Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:8674-8679.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 8674-8679
-
-
Qiao, W.1
-
14
-
-
33644828992
-
Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae
-
Wang Z., et al. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae. J. Mol. Biol. 2006, 357:1167-1183.
-
(2006)
J. Mol. Biol.
, vol.357
, pp. 1167-1183
-
-
Wang, Z.1
-
15
-
-
22644436960
-
Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status
-
Herbig A., et al. Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status. Mol. Microbiol. 2005, 57:834-846.
-
(2005)
Mol. Microbiol.
, vol.57
, pp. 834-846
-
-
Herbig, A.1
-
16
-
-
79953198271
-
Roles of two activation domains in Zap1 in the response to zinc deficiency in Saccharomyces cerevisiae
-
Frey A.G., Eide D.J. Roles of two activation domains in Zap1 in the response to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 2011, 286:6844-6854.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 6844-6854
-
-
Frey, A.G.1
Eide, D.J.2
-
17
-
-
34447105299
-
Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1)
-
Laity J.H., Andrews G.K. Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch. Biochem. Biophys. 2007, 463:201-210.
-
(2007)
Arch. Biochem. Biophys.
, vol.463
, pp. 201-210
-
-
Laity, J.H.1
Andrews, G.K.2
-
18
-
-
1242277806
-
Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells
-
Rutherford J.C., Bird A.J. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot. Cell 2004, 3:1-13.
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 1-13
-
-
Rutherford, J.C.1
Bird, A.J.2
-
19
-
-
0242637400
-
2 in vitro is modulated by metallothionein
-
2 in vitro is modulated by metallothionein. Mol. Cell. Biol. 2003, 23:8471-8485.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 8471-8485
-
-
Zhang, B.1
-
20
-
-
76749126469
-
Metal transcription factor-1 regulation via MREs in the transcribed regions of selenoprotein H and other metal-responsive genes
-
Stoytcheva Z.R., et al. Metal transcription factor-1 regulation via MREs in the transcribed regions of selenoprotein H and other metal-responsive genes. Biochim. Biophys. Acta. 2010, 1800:416-424.
-
(2010)
Biochim. Biophys. Acta.
, vol.1800
, pp. 416-424
-
-
Stoytcheva, Z.R.1
-
21
-
-
78649470197
-
Induction of FPN1 transcription by MTF-1 reveals a role for ferroportin in transition metal efflux
-
Troadec M.B., et al. Induction of FPN1 transcription by MTF-1 reveals a role for ferroportin in transition metal efflux. Blood 2010, 116:4657-4664.
-
(2010)
Blood
, vol.116
, pp. 4657-4664
-
-
Troadec, M.B.1
-
22
-
-
71949121492
-
Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain
-
Lindert U., et al. Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain. Mol. Cell. Biol. 2009, 29:6283-6293.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 6283-6293
-
-
Lindert, U.1
-
23
-
-
77953716761
-
The metal-responsive transcription factor-1 protein is elevated in human tumors
-
Shi Y., et al. The metal-responsive transcription factor-1 protein is elevated in human tumors. Cancer Biol. Ther. 2010, 9:469-476.
-
(2010)
Cancer Biol. Ther.
, vol.9
, pp. 469-476
-
-
Shi, Y.1
-
24
-
-
78650719200
-
Zinc overload enhances APP cleavage and Aβ deposition in the Alzheimer mouse brain
-
Wang C.Y., et al. Zinc overload enhances APP cleavage and Aβ deposition in the Alzheimer mouse brain. PLoS ONE 2010, 5:e15349.
-
(2010)
PLoS ONE
, vol.5
-
-
Wang, C.Y.1
-
25
-
-
35348925016
-
FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii
-
Allen M.D., et al. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot. Cell 2007, 6:1841-1852.
-
(2007)
Eukaryot. Cell
, vol.6
, pp. 1841-1852
-
-
Allen, M.D.1
-
26
-
-
18444408674
-
The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response
-
Colangelo E.P., Guerinot M.L. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 2004, 16:3400-3412.
-
(2004)
Plant Cell
, vol.16
, pp. 3400-3412
-
-
Colangelo, E.P.1
Guerinot, M.L.2
-
27
-
-
77956819375
-
The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots
-
Long T.A., et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 2010, 22:2219-2236.
-
(2010)
Plant Cell
, vol.22
, pp. 2219-2236
-
-
Long, T.A.1
-
28
-
-
70350657148
-
Iron acquisition and transcriptional regulation
-
Kaplan C.D., Kaplan J. Iron acquisition and transcriptional regulation. Chem. Rev. 2009, 109:4536-4552.
-
(2009)
Chem. Rev.
, vol.109
, pp. 4536-4552
-
-
Kaplan, C.D.1
Kaplan, J.2
-
29
-
-
11844257593
-
Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation
-
Puig S., et al. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 2005, 120:99-110.
-
(2005)
Cell
, vol.120
, pp. 99-110
-
-
Puig, S.1
-
30
-
-
44349183685
-
Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency
-
Puig S., et al. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency. Cell. Metab. 2008, 7:555-564.
-
(2008)
Cell. Metab.
, vol.7
, pp. 555-564
-
-
Puig, S.1
-
31
-
-
33751174095
-
A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe
-
Mercier A., et al. A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe. Eukaryot. Cell 2006, 5:1866-1881.
-
(2006)
Eukaryot. Cell
, vol.5
, pp. 1866-1881
-
-
Mercier, A.1
-
32
-
-
34547763678
-
Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae
-
Ueta R., et al. Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. Mol. Biol. Cell. 2007, 18:2980-2990.
-
(2007)
Mol. Biol. Cell.
, vol.18
, pp. 2980-2990
-
-
Ueta, R.1
-
33
-
-
15444371876
-
Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis
-
Rutherford J.C., et al. Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J. Biol. Chem. 2005, 280:10135-10140.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 10135-10140
-
-
Rutherford, J.C.1
-
34
-
-
3142667831
-
Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis
-
Chen O.S., et al. Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis. J. Biol. Chem. 2004, 279:29513-29518.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 29513-29518
-
-
Chen, O.S.1
-
35
-
-
33745872884
-
Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae
-
Ojeda L., et al. Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 2006, 281:17661-17669.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 17661-17669
-
-
Ojeda, L.1
-
36
-
-
33751529756
-
Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae
-
Pujol-Carrion N., et al. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J. Cell Sci. 2006, 119:4554-4564.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 4554-4564
-
-
Pujol-Carrion, N.1
-
37
-
-
77957674907
-
Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster
-
Muhlenhoff U., et al. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab. 2010, 12:373-385.
-
(2010)
Cell Metab.
, vol.12
, pp. 373-385
-
-
Muhlenhoff, U.1
-
38
-
-
67650077717
-
Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin
-
Iwema T., et al. Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin. Biochemistry 2009, 48:6041-6043.
-
(2009)
Biochemistry
, vol.48
, pp. 6041-6043
-
-
Iwema, T.1
-
39
-
-
44849098197
-
Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis
-
Kumanovics A., et al. Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J. Biol. Chem. 2008, 283:10276-10286.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10276-10286
-
-
Kumanovics, A.1
-
40
-
-
78650949287
-
Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast
-
Li H., et al. Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast. J. Biol. Chem. 2011, 286:867-876.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 867-876
-
-
Li, H.1
-
41
-
-
70350070125
-
The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation
-
Li H., et al. The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 2009, 48:9569-9581.
-
(2009)
Biochemistry
, vol.48
, pp. 9569-9581
-
-
Li, H.1
-
42
-
-
67749116417
-
Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1
-
Mercier A., Labbe S. Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1. J. Biol. Chem. 2009, 284:20249-20262.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 20249-20262
-
-
Mercier, A.1
Labbe, S.2
-
43
-
-
65149090846
-
Facing the challenges of Cu, Fe and Zn homeostasis in plants
-
Palmer C.M., Guerinot M.L. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat. Chem. Biol. 2009, 5:333-340.
-
(2009)
Nat. Chem. Biol.
, vol.5
, pp. 333-340
-
-
Palmer, C.M.1
Guerinot, M.L.2
-
44
-
-
38149059054
-
An iron enhancer element in the FTN-1 gene directs iron-dependent expression in Caenorhabditis elegans intestine
-
Romney S.J., et al. An iron enhancer element in the FTN-1 gene directs iron-dependent expression in Caenorhabditis elegans intestine. J. Biol. Chem. 2008, 283:716-725.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 716-725
-
-
Romney, S.J.1
-
45
-
-
38949162530
-
Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast
-
Li L., et al. Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol. Cell. Biol. 2008, 28:1326-1337.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 1326-1337
-
-
Li, L.1
-
46
-
-
0023884191
-
Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels
-
White K., Munro H.N. Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels. J. Biol. Chem. 1988, 263:8938-8942.
-
(1988)
J. Biol. Chem.
, vol.263
, pp. 8938-8942
-
-
White, K.1
Munro, H.N.2
-
47
-
-
0033571744
-
Transcriptional control is relevant in the modulation of mosquito ferritin synthesis by iron
-
Pham D.Q., et al. Transcriptional control is relevant in the modulation of mosquito ferritin synthesis by iron. Eur. J. Biochem. 1999, 266:236-240.
-
(1999)
Eur. J. Biochem.
, vol.266
, pp. 236-240
-
-
Pham, D.Q.1
-
48
-
-
79952779937
-
Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions
-
Lin H., et al. Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions. J. Biol. Chem. 2011, 286:3851-3862.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 3851-3862
-
-
Lin, H.1
-
49
-
-
0037151108
-
Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe
-
Pelletier B., et al. Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe. J. Biol. Chem. 2002, 277:22950-22958.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 22950-22958
-
-
Pelletier, B.1
-
50
-
-
64749088644
-
Iron activates in vivo DNA binding of Schizosaccharomyces pombe transcription factor Fep1 through its amino-terminal region
-
Jbel M., et al. Iron activates in vivo DNA binding of Schizosaccharomyces pombe transcription factor Fep1 through its amino-terminal region. Eukaryot. Cell 2009, 8:649-664.
-
(2009)
Eukaryot. Cell
, vol.8
, pp. 649-664
-
-
Jbel, M.1
-
51
-
-
46849120759
-
Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen Histoplasma capsulatum
-
Chao L.Y., et al. Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen Histoplasma capsulatum. Biochemistry 2008, 47:7274-7283.
-
(2008)
Biochemistry
, vol.47
, pp. 7274-7283
-
-
Chao, L.Y.1
-
52
-
-
79956029734
-
Grx4 monothiol glutaredoxin is required for iron limitation-dependent inhibition of Fep1
-
Jbel M., et al. Grx4 monothiol glutaredoxin is required for iron limitation-dependent inhibition of Fep1. Eukaryot. Cell 2011, 10:629-645.
-
(2011)
Eukaryot. Cell
, vol.10
, pp. 629-645
-
-
Jbel, M.1
-
53
-
-
79956202651
-
Multi-domain CGFS-type glutaredoxin Grx4 regulates iron homeostasis via direct interaction with a repressor Fep1 in fission yeast
-
Kim K.D., et al. Multi-domain CGFS-type glutaredoxin Grx4 regulates iron homeostasis via direct interaction with a repressor Fep1 in fission yeast. Biochem. Biophys. Res. Commun. 2011, 408:609-614.
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.408
, pp. 609-614
-
-
Kim, K.D.1
-
54
-
-
66249112833
-
The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity
-
Macomber L., Imlay J.A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:8344-8349.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 8344-8349
-
-
Macomber, L.1
Imlay, J.A.2
-
55
-
-
1842453678
-
From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms
-
Rees E.M., Thiele D.J. From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms. Curr. Opin. Microbiol. 2004, 7:175-184.
-
(2004)
Curr. Opin. Microbiol.
, vol.7
, pp. 175-184
-
-
Rees, E.M.1
Thiele, D.J.2
-
56
-
-
79957609529
-
Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps
-
Castruita M., et al. Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 2011, 23:1273-1292.
-
(2011)
Plant Cell
, vol.23
, pp. 1273-1292
-
-
Castruita, M.1
-
57
-
-
17444417126
-
Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes
-
Selvaraj A., et al. Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev. 2005, 19:891-896.
-
(2005)
Genes Dev.
, vol.19
, pp. 891-896
-
-
Selvaraj, A.1
-
58
-
-
0032530720
-
Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae
-
Jensen L.T., Winge D.R. Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO J. 1998, 17:5400-5408.
-
(1998)
EMBO J.
, vol.17
, pp. 5400-5408
-
-
Jensen, L.T.1
Winge, D.R.2
-
59
-
-
58649108110
-
Transcriptional activation in yeast in response to copper deficiency involves copper-zinc superoxide dismutase
-
Wood L.K., Thiele D.J. Transcriptional activation in yeast in response to copper deficiency involves copper-zinc superoxide dismutase. J. Biol. Chem. 2009, 284:404-413.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 404-413
-
-
Wood, L.K.1
Thiele, D.J.2
-
60
-
-
79551650614
-
The CRR1 nutritional copper sensor in Chlamydomonas contains two distinct metal-responsive domains
-
Sommer F., et al. The CRR1 nutritional copper sensor in Chlamydomonas contains two distinct metal-responsive domains. Plant Cell 2010, 22:4098-4113.
-
(2010)
Plant Cell
, vol.22
, pp. 4098-4113
-
-
Sommer, F.1
-
61
-
-
62549146646
-
SQUAMOSA promoter binding protein-like 7 is a central regulator for copper homeostasis in Arabidopsis
-
Yamasaki H., et al. SQUAMOSA promoter binding protein-like 7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 2009, 21:347-361.
-
(2009)
Plant Cell
, vol.21
, pp. 347-361
-
-
Yamasaki, H.1
-
62
-
-
47049120791
-
MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis
-
Abdel-Ghany S.E., Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J. Biol. Chem. 2008, 283:15932-15945.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 15932-15945
-
-
Abdel-Ghany, S.E.1
Pilon, M.2
-
63
-
-
0038529682
-
The Schizosaccharomyces pombe Cuf1 is composed of functional modules from two distinct classes of copper metalloregulatory transcription factors
-
Beaudoin J., et al. The Schizosaccharomyces pombe Cuf1 is composed of functional modules from two distinct classes of copper metalloregulatory transcription factors. J. Biol. Chem. 2003, 278:14565-14577.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 14565-14577
-
-
Beaudoin, J.1
-
64
-
-
33750219660
-
Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc
-
Yepiskoposyan H., et al. Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Res. 2006, 34:4866-4877.
-
(2006)
Nucleic Acids Res.
, vol.34
, pp. 4866-4877
-
-
Yepiskoposyan, H.1
-
65
-
-
44349173738
-
Copper sensing function of Drosophila metal-responsive transcription factor-1 is mediated by a tetranuclear Cu(I) cluster
-
Chen X., et al. Copper sensing function of Drosophila metal-responsive transcription factor-1 is mediated by a tetranuclear Cu(I) cluster. Nucleic Acids Res. 2008, 36:3128-3138.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 3128-3138
-
-
Chen, X.1
-
66
-
-
54549088946
-
Protein-folding location can regulate manganese-binding versus copper- or zinc-binding
-
Tottey S., et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 2008, 455:1138-1142.
-
(2008)
Nature
, vol.455
, pp. 1138-1142
-
-
Tottey, S.1
-
67
-
-
33646155960
-
The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2
-
Yang M., et al. The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2. EMBO J. 2006, 25:1775-1783.
-
(2006)
EMBO J.
, vol.25
, pp. 1775-1783
-
-
Yang, M.1
-
68
-
-
43049150678
-
Metals in Alzheimer's and Parkinson's diseases
-
Barnham K.J., Bush A.I. Metals in Alzheimer's and Parkinson's diseases. Curr. Opin. Chem. Biol. 2008, 12:222-228.
-
(2008)
Curr. Opin. Chem. Biol.
, vol.12
, pp. 222-228
-
-
Barnham, K.J.1
Bush, A.I.2
-
69
-
-
36749037264
-
Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression
-
Li M., et al. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:18636-18641.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 18636-18641
-
-
Li, M.1
-
70
-
-
40249095934
-
FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis
-
Yuan Y., et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res. 2008, 18:385-397.
-
(2008)
Cell Res.
, vol.18
, pp. 385-397
-
-
Yuan, Y.1
|