메뉴 건너뛰기




Volumn 66, Issue 23, 2011, Pages 6264-6271

Determination of steel quality based on discriminating textural feature selection

Author keywords

Chemical processes; Dynamic simulation; Feature selection; Process modeling; Systems engineering; Wavelet texture analysis

Indexed keywords

BEST BASIS; CHEMICAL PROCESS; CLASSIFICATION ERRORS; COMMON FEATURES; IMAGE DATA; IMAGE DATASETS; INDUSTRIAL STEEL; LOCAL DISCRIMINANT BASIS; PROCESS MODELING; PRODUCT SURFACE; QUALITY DETERMINATION; REAL TIME; SENSOR SYSTEMS; STEEL QUALITY; TEXTURAL CHARACTERISTIC; TEXTURAL FEATURE; TEXTURAL INFORMATION; TEXTURE ANALYSIS METHOD; TEXTURE CLASSIFICATION; WAVELET COEFFICIENTS; WAVELET PACKET BASIS; WAVELET SIGNATURES; WAVELET TEXTURE ANALYSIS;

EID: 80053289560     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2011.09.004     Document Type: Article
Times cited : (11)

References (33)
  • 2
    • 0027677864 scopus 로고
    • Texture analysis and classification with tree-structured wavelet transform
    • Chang T., Kuo C.C.J. Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 1993, 2(4):429-441.
    • (1993) IEEE Trans. Image Process. , vol.2 , Issue.4 , pp. 429-441
    • Chang, T.1    Kuo, C.C.J.2
  • 3
    • 0035948737 scopus 로고    scopus 로고
    • WPTER: wavelet packet transform for efficient pattern recognition of signals
    • Cocchi M., Seeber R., Ulrici A. WPTER: wavelet packet transform for efficient pattern recognition of signals. Chemometrics Intell. Lab. Syst. 2001, 57(2):97-119.
    • (2001) Chemometrics Intell. Lab. Syst. , vol.57 , Issue.2 , pp. 97-119
    • Cocchi, M.1    Seeber, R.2    Ulrici, A.3
  • 4
    • 0026686048 scopus 로고
    • Entropy-based algorithms for best basis selection
    • Coifman R.R., Wickerhauser M.V. Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 1992, 38(2):713-718.
    • (1992) IEEE Trans. Inf. Theory , vol.38 , Issue.2 , pp. 713-718
    • Coifman, R.R.1    Wickerhauser, M.V.2
  • 5
    • 79951922227 scopus 로고    scopus 로고
    • Wavelet-based image texture classification using local energy histograms
    • Dong Y.J., Ma Wavelet-based image texture classification using local energy histograms. IEEE Signal Process. Lett 2011, 18(4):247-250.
    • (2011) IEEE Signal Process. Lett , vol.18 , Issue.4 , pp. 247-250
    • Dong, Y.J.1    Ma2
  • 7
    • 0036811755 scopus 로고    scopus 로고
    • Comparison of texture features based on Gabor filters
    • Grigorescu S., Petkov N., Kruizinga P. Comparison of texture features based on Gabor filters. IEEE Trans. Image Process. 2002, 11(10):1160-1167.
    • (2002) IEEE Trans. Image Process. , vol.11 , Issue.10 , pp. 1160-1167
    • Grigorescu, S.1    Petkov, N.2    Kruizinga, P.3
  • 8
    • 77957900631 scopus 로고    scopus 로고
    • Wavelet domain association rules for efficient texture classification
    • Karabatak M., Ince M.C., Sengur A. Wavelet domain association rules for efficient texture classification. Appl. Soft Comput. 2011, 11(1):32-38.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 32-38
    • Karabatak, M.1    Ince, M.C.2    Sengur, A.3
  • 9
    • 1942503301 scopus 로고    scopus 로고
    • Wavelet based feature extraction for hyperspectral vegetation monitoring
    • Kempeneers P., De Backer S., Debruyn W., Scheunders P. Wavelet based feature extraction for hyperspectral vegetation monitoring. Proc. SPIE 2004, 5238:297-305.
    • (2004) Proc. SPIE , vol.5238 , pp. 297-305
    • Kempeneers, P.1    De Backer, S.2    Debruyn, W.3    Scheunders, P.4
  • 10
    • 65149093195 scopus 로고    scopus 로고
    • Optimal wavelet packets for characterizing surface quality
    • Kim D., Han C., Liu J.J. Optimal wavelet packets for characterizing surface quality. Ind. Eng. Chem. Res. 2009, 48(5):2590-2597.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , Issue.5 , pp. 2590-2597
    • Kim, D.1    Han, C.2    Liu, J.J.3
  • 11
    • 79960798100 scopus 로고    scopus 로고
    • Quality determination of steel surfaces based on best feature selection
    • Kim D., Liu J.J., Han C. Quality determination of steel surfaces based on best feature selection. J. Chem. Eng. Jpn. 2011, 44(0):494-501.
    • (2011) J. Chem. Eng. Jpn. , vol.44 , Issue.0 , pp. 494-501
    • Kim, D.1    Liu, J.J.2    Han, C.3
  • 12
    • 0015852090 scopus 로고
    • Psychophysical evidence for sustained and transient detectors in human vision
    • Kulikowski, Tolhurst J.D. Psychophysical evidence for sustained and transient detectors in human vision. J. Physiol. 1973, 232(1):149.
    • (1973) J. Physiol. , vol.232 , Issue.1 , pp. 149
    • Kulikowski1    Tolhurst, J.D.2
  • 13
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • Kumar S., Ghosh J., Crawford M.M. Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sensing 2001, 39(7):1368-1379.
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 14
    • 0027702444 scopus 로고
    • Texture classification by wavelet packet signatures
    • Laine A., Fan J. Texture classification by wavelet packet signatures. IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15(11):1186-1191.
    • (1993) IEEE Trans. Pattern Anal. Mach. Intell. , vol.15 , Issue.11 , pp. 1186-1191
    • Laine, A.1    Fan, J.2
  • 15
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • Lee J., Yoo C., Lee I. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chem. Eng. Sci. 2004, 59(14):2995-3006.
    • (2004) Chem. Eng. Sci. , vol.59 , Issue.14 , pp. 2995-3006
    • Lee, J.1    Yoo, C.2    Lee, I.3
  • 16
    • 0026819616 scopus 로고    scopus 로고
    • A new scheme combining neural feedforward control with model-predictive control
    • Lee M., Park S. A new scheme combining neural feedforward control with model-predictive control. AIChE Journal 2004, 38(2):193-200.
    • (2004) AIChE Journal , vol.38 , Issue.2 , pp. 193-200
    • Lee, M.1    Park, S.2
  • 17
    • 79955594661 scopus 로고    scopus 로고
    • Using wavelet transform and multi-class least square support vector machine in multi-spectral imaging classification of Chinese famous tea
    • Li X., Nie P., Qiu Z.-J., He Y. Using wavelet transform and multi-class least square support vector machine in multi-spectral imaging classification of Chinese famous tea. Expert Syst. Appl. 2011, 38(9):11149-11159.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.9 , pp. 11149-11159
    • Li, X.1    Nie, P.2    Qiu, Z.-J.3    He, Y.4
  • 18
    • 80052917466 scopus 로고    scopus 로고
    • Efficient hardware architecture based on generalized Hebbian algorithm for texture classification
    • Neurocomputing, in press, doi:.
    • Lin, S.J., Hung Y.T., Hwang W.J. Efficient hardware architecture based on generalized Hebbian algorithm for texture classification. Neurocomputing, in press, doi:. http://10.1016/j.neucom.2011.05.010.
    • Lin, S.J.1    Hung, Y.T.2    Hwang, W.J.3
  • 19
    • 34547413895 scopus 로고    scopus 로고
    • Use of wavelet packet transform in characterization of surface quality
    • Liu J.J., Kim D., Han C. Use of wavelet packet transform in characterization of surface quality. Ind. Eng. Chem. Res. 2007, 46(15):5152-5158.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , Issue.15 , pp. 5152-5158
    • Liu, J.J.1    Kim, D.2    Han, C.3
  • 20
    • 80052319538 scopus 로고    scopus 로고
    • Image sensor technology
    • McGrath R. Image sensor technology. Single-Photon Imaging 2011, 160:27-47.
    • (2011) Single-Photon Imaging , vol.160 , pp. 27-47
    • McGrath, R.1
  • 22
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S. Statistical process monitoring: basics and beyond. J. Chemometrics 2003, 17(8-9):480-502.
    • (2003) J. Chemometrics , vol.17 , Issue.8-9 , pp. 480-502
    • Qin, S.1
  • 23
    • 1242330947 scopus 로고    scopus 로고
    • Local discriminant wavelet packet basis for texture classification
    • Rajpoot N. Local discriminant wavelet packet basis for texture classification. Proc. SPIE 2003, 5207:774-783.
    • (2003) Proc. SPIE , vol.5207 , pp. 774-783
    • Rajpoot, N.1
  • 24
    • 77957928065 scopus 로고    scopus 로고
    • Image-based classification of paper surface quality using wavelet texture analysis
    • Reis M.S., Bauer A. Image-based classification of paper surface quality using wavelet texture analysis. Comput. Chem. Eng. 2010, 34(12):2014-2021.
    • (2010) Comput. Chem. Eng. , vol.34 , Issue.12 , pp. 2014-2021
    • Reis, M.S.1    Bauer, A.2
  • 25
    • 0000453879 scopus 로고
    • Local discriminant bases and their applications
    • Saito N., Coifman R.R. Local discriminant bases and their applications. J. Math. Imaging Vision 1995, 5(4):337-358.
    • (1995) J. Math. Imaging Vision , vol.5 , Issue.4 , pp. 337-358
    • Saito, N.1    Coifman, R.R.2
  • 26
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectralremote sensing images
    • Serpico S., Bruzzone L. A new search algorithm for feature selection in hyperspectralremote sensing images. IEEE Trans. Geosci. Remote Sensing 2001, 39(7):1360-1367.
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.1    Bruzzone, L.2
  • 28
    • 79952787703 scopus 로고    scopus 로고
    • Combined multi-kernel support vector machine and wavelet analysis for hyperspectral remote sensing image classification
    • Tan K.P., Du Combined multi-kernel support vector machine and wavelet analysis for hyperspectral remote sensing image classification. Chin. Opt. Lett. 2011, 9(1):011003.
    • (2011) Chin. Opt. Lett. , vol.9 , Issue.1 , pp. 011003
    • Tan, K.P.1    Du2
  • 29
    • 80051680821 scopus 로고    scopus 로고
    • A new method to quantify parameters of membrane morphology from electron microscopy micrographs by texture recognition
    • Torras C., Puig D., Angel Garcia M. A new method to quantify parameters of membrane morphology from electron microscopy micrographs by texture recognition. Chem. Eng. Sci. 2011, 66(20):4582-4594.
    • (2011) Chem. Eng. Sci. , vol.66 , Issue.20 , pp. 4582-4594
    • Torras, C.1    Puig, D.2    Angel Garcia, M.3
  • 31
    • 0030741225 scopus 로고    scopus 로고
    • Wavelet packet transform applied to a set of signals: a new approach to the best-basis selection
    • Walczak B., Massart D.L. Wavelet packet transform applied to a set of signals: a new approach to the best-basis selection. Chemometrics Intell. Lab. Syst. 1997, 38(1):39-50.
    • (1997) Chemometrics Intell. Lab. Syst. , vol.38 , Issue.1 , pp. 39-50
    • Walczak, B.1    Massart, D.L.2
  • 32
    • 79956271899 scopus 로고    scopus 로고
    • Analysis of transparent coating technology on the surface texture of ash veneer based on wavelet component parameters
    • Wang F., Liu B., Jiao A., Zhu X., Sun J., Li Y. Analysis of transparent coating technology on the surface texture of ash veneer based on wavelet component parameters. Adv. Electr. Electron. Eng. 2011, 547-554.
    • (2011) Adv. Electr. Electron. Eng. , pp. 547-554
    • Wang, F.1    Liu, B.2    Jiao, A.3    Zhu, X.4    Sun, J.5    Li, Y.6
  • 33
    • 76549132623 scopus 로고    scopus 로고
    • Complex process quality prediction using modified kernel partial least squares
    • Zhang Y., Teng Y. Complex process quality prediction using modified kernel partial least squares. Chem. Eng. Sci. 2010, 65(6):2153-2158.
    • (2010) Chem. Eng. Sci. , vol.65 , Issue.6 , pp. 2153-2158
    • Zhang, Y.1    Teng, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.