메뉴 건너뛰기




Volumn , Issue , 2011, Pages 698-708

A new data layout for set intersection on GPUs

Author keywords

Data layout; Frequent itemset mining; GPU; Set intersection; Sparse boolean matrix multiplication

Indexed keywords

BOOLEAN MATRIX MULTIPLICATION; DATA LAYOUTS; FREQUENT ITEMSET MINING; GPU; SET INTERSECTION;

EID: 80053252111     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IPDPS.2011.71     Document Type: Conference Paper
Times cited : (17)

References (31)
  • 3
    • 38149070141 scopus 로고    scopus 로고
    • Fast evaluation of unionintersection expressions
    • Proceedings of International Symposium on Algorithms And Computation (ISAAC), Springer
    • P. Bille, A. Pagh, and R. Pagh. Fast evaluation of unionintersection expressions. In Proceedings of International Symposium on Algorithms And Computation (ISAAC), volume 4835 of Lecture Notes in Computer Science, pages 739-750. Springer, 2007.
    • (2007) Lecture Notes in Computer Science , vol.4835 , pp. 739-750
    • Bille, P.1    Pagh, A.2    Pagh, R.3
  • 5
    • 19544387826 scopus 로고    scopus 로고
    • Efficient implementations of apriori and eclat
    • Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, CEUR-WS.org
    • C. Borgelt. Efficient implementations of apriori and eclat. In Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, volume 90 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.
    • (2003) CEUR Workshop Proceedings , vol.90
    • Borgelt, C.1
  • 6
    • 57349086983 scopus 로고    scopus 로고
    • Recursion pruning for the apriori algorithm
    • Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, CEUR-WS.org
    • C. Borgelt. Recursion pruning for the apriori algorithm. In Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, volume 126 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.
    • (2004) CEUR Workshop Proceedings , vol.126
    • Borgelt, C.1
  • 14
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • DOI 10.1023/B:DAMI.0000005258.31418.83
    • J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Min. Knowl. Discov, 8(1):53-87, 2004. (Pubitemid 39019971)
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 18
    • 85011032633 scopus 로고    scopus 로고
    • Optimization of frequent itemset mining on multiple-core processor
    • ACM
    • E. Li and L. Liu. Optimization of frequent itemset mining on multiple-core processor. In VLDB, pages 1275-1285. ACM, 2007.
    • (2007) VLDB , pp. 1275-1285
    • Li, E.1    Liu, L.2
  • 22
    • 42449151364 scopus 로고    scopus 로고
    • Nonordfp: An FP-growth variation without rebuilding the FP-tree
    • Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, CEUR-WS.org
    • B. Rácz. nonordfp: An FP-growth variation without rebuilding the FP-tree. In Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, volume 126 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.
    • (2004) CEUR Workshop Proceedings , vol.126
    • Rácz, B.1
  • 24
    • 0021428344 scopus 로고
    • SIMULATION OF PARALLEL RANDOM ACCESS MACHINES BY CIRCUITS
    • L. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by circuits. SIAM J. Comput., 13(2):409-422, May 1984. (Pubitemid 15493881)
    • (1984) SIAM Journal on Computing , vol.13 , Issue.2 , pp. 409-422
    • Stockmeyer, L.1    Vishkin, U.2
  • 25
    • 33745299085 scopus 로고    scopus 로고
    • LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets
    • Proceedings of the IEEE ICDM Workshop on Frequent Item-set Mining Implementations, CEUR-WS.org
    • T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. In Proceedings of the IEEE ICDM Workshop on Frequent Item-set Mining Implementations, volume 126 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.
    • (2004) CEUR Workshop Proceedings , vol.126
    • Uno, T.1    Kiyomi, M.2    Arimura, H.3
  • 26
    • 0023266822 scopus 로고
    • HOW TO SHARE MEMORY IN A DISTRIBUTED SYSTEM
    • DOI 10.1145/7531.7926
    • E. Upfal and A. Wigderson. How to share memory in a distributed system. Journal of the ACM, 34(1):116-127, Jan. 1987. (Pubitemid 17601594)
    • (1987) Journal of the ACM , vol.34 , Issue.1 , pp. 116-127
    • Upfal, E.1    Wigderson, A.2
  • 28
    • 34547332212 scopus 로고    scopus 로고
    • A parallel apriori algorithm for frequent itemsets mining
    • IEEE Computer Society
    • Y. Ye and C.-C. Chiang. A parallel apriori algorithm for frequent itemsets mining. In SERA, pages 87-94. IEEE Computer Society, 2006.
    • (2006) SERA , pp. 87-94
    • Ye, Y.1    Chiang, C.-C.2
  • 30
    • 0033354342 scopus 로고    scopus 로고
    • Parallel and distributed association mining: A survey
    • Oct./Dec.
    • M. J. Zaki. Parallel and distributed association mining: A survey. IEEE Concurrency, 7(4):14-25, Oct./Dec. 1999.
    • (1999) IEEE Concurrency , vol.7 , Issue.4 , pp. 14-25
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.