-
3
-
-
0000913755
-
Spatial interaction and the statistical analysis of lattice systems
-
J. Besag. Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc., Ser. B, 36:192-236, 1974.
-
(1974)
J. Roy. Statist. Soc., Ser. B
, vol.36
, pp. 192-236
-
-
Besag, J.1
-
4
-
-
85038293649
-
Comment to “Conditionally specified distributions”
-
J. Besag. Comment to “Conditionally specified distributions”. Statist. Sci., 16:265-267, 2001.
-
(2001)
Statist. Sci
, vol.16
, pp. 265-267
-
-
Besag, J.1
-
6
-
-
0013058634
-
Variational MCMC
-
N. de Freitas, P. Højen-Sørensen, M. I. Jordan, and S. Russell. Variational MCMC. In Uncertainty in Artificial Intelligence, volume 17, pages 120-127, 2001.
-
(2001)
Uncertainty in Artificial Intelligence
, vol.17
, pp. 120-127
-
-
de Freitas, N.1
Højen-Sørensen, P.2
Jordan, M. I.3
Russell, S.4
-
7
-
-
33646684004
-
Sequential Monte Carlo samplers
-
P. del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. J. Roy. Statist. Soc., Ser. B, 68:411-436, 2006.
-
(2006)
J. Roy. Statist. Soc., Ser. B
, vol.68
, pp. 411-436
-
-
del Moral, P.1
Doucet, A.2
Jasra, A.3
-
9
-
-
64149131309
-
Hot Coupling: a particle approach to inference and normalization on pairwise undirected graphs
-
F. Hamze and N. de Freitas. Hot Coupling: a particle approach to inference and normalization on pairwise undirected graphs. Advances in Neural Information Processing Systems, 18:491-498, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.18
, pp. 491-498
-
-
Hamze, F.1
de Freitas, N.2
-
10
-
-
27344435412
-
Approximate inference and constrained optimization
-
T. Heskes, K. Albers, and B. Kappen. Approximate inference and constrained optimization. In Uncertainty in Artificial Intelligence, volume 19, pages 313-320, 2003.
-
(2003)
Uncertainty in Artificial Intelligence
, vol.19
, pp. 313-320
-
-
Heskes, T.1
Albers, K.2
Kappen, B.3
-
11
-
-
4243754128
-
Nonequilibrium equality for free energy differences
-
C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78:2690-2693, 1997.
-
(1997)
Phys. Rev. Lett
, vol.78
, pp. 2690-2693
-
-
Jarzynski, C.1
-
12
-
-
0002734223
-
The Markov chain Monte Carlo method: an approach to approximate counting and integration
-
PWS Pubs
-
M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: an approach to approximate counting and integration. In Approximation Algorithms for NP-hard Problems, pages 482-520. PWS Pubs., 1996.
-
(1996)
Approximation Algorithms for NP-hard Problems
, pp. 482-520
-
-
Jerrum, M.1
Sinclair, A.2
-
13
-
-
0030304310
-
Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
-
G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist., 5:1-25, 1996.
-
(1996)
J. Comput. Graph. Statist
, vol.5
, pp. 1-25
-
-
Kitagawa, G.1
-
15
-
-
0000273048
-
Annealed importance sampling
-
R. M. Neal. Annealed importance sampling. Statist. and Comput., 11:125-139, 2001.
-
(2001)
Statist. and Comput
, vol.11
, pp. 125-139
-
-
Neal, R. M.1
-
19
-
-
36849137515
-
Monte Carlo calculation of the average extension of molecular chains
-
M. N. Rosenbluth and A. W. Rosenbluth. Monte Carlo calculation of the average extension of molecular chains. J. Chem. Phys., 23:356-359, 1955.
-
(1955)
J. Chem. Phys
, vol.23
, pp. 356-359
-
-
Rosenbluth, M. N.1
Rosenbluth, A. W.2
-
20
-
-
0025432132
-
On large deviations theory and asymptotically efficient Monte Carlo estimation
-
J. S. Sadowsky and J. A. Bucklew. On large deviations theory and asymptotically efficient Monte Carlo estimation. IEEE Trans. Inform. Theory, 36:579-588, 1990.
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 579-588
-
-
Sadowsky, J. S.1
Bucklew, J. A.2
-
23
-
-
17744411678
-
Nonparametric belief propagation
-
E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky. Nonparametric belief propagation. In Computer Vision and Pattern Recognition, volume I, pages 605-612, 2003.
-
(2003)
Computer Vision and Pattern Recognition
, vol.I
, pp. 605-612
-
-
Sudderth, E. B.1
Ihler, A. T.2
Freeman, W. T.3
Willsky, A. S.4
-
25
-
-
78149294370
-
-
Technical report, EECS Dept., University of California, Berkeley
-
M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Technical report, EECS Dept., University of California, Berkeley, 2003.
-
(2003)
Graphical models, exponential families, and variational inference
-
-
Wainwright, M. J.1
Jordan, M. I.2
-
26
-
-
0012131861
-
Variational approximations between mean field theory and the junction tree algorithm
-
W. Wiegerinck. Variational approximations between mean field theory and the junction tree algorithm. In Uncertainty in Artificial Intelligence, volume 16, pages 626-633, 2000.
-
(2000)
Uncertainty in Artificial Intelligence
, vol.16
, pp. 626-633
-
-
Wiegerinck, W.1
|