메뉴 건너뛰기




Volumn , Issue , 2011, Pages 745-752

Sparse matrix-variate Gaussian process blockmodels for network modeling

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; GAUSSIAN NOISE (ELECTRONIC); MATRIX ALGEBRA; MAXIMUM PRINCIPLE; SOCIAL NETWORKING (ONLINE);

EID: 80053163690     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (16)

References (15)
  • 3
    • 75849131336 scopus 로고    scopus 로고
    • Modeling homophily and stochastic equivalence in symmetric relational data
    • Peter Hoff. Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in Neural Information Processing Systems 20, 2007.
    • (2007) Advances in Neural Information Processing Systems , vol.20
    • Hoff, P.1
  • 4
    • 0031495186 scopus 로고    scopus 로고
    • Estimation and prediction for stochastic blockmodels for graphs with latent block structure
    • Tom A.B. Snijders and Krzysztof Nowicki. Estimation and prediction for stochastic blockmodels for graphs with latent block structure. Journal of Classification, 14(1): 75-100, 1997.
    • (1997) Journal of Classification , vol.14 , Issue.1 , pp. 75-100
    • Snijders, T.A.B.1    Nowicki, K.2
  • 6
    • 0036967824 scopus 로고    scopus 로고
    • Latent space approaches to social network analysis
    • DOI 10.1198/016214502388618906
    • Peter D. Hoff, Adrian E. Raftery, Mark S. Handcock, and Mark S. H. Latent space approaches to social network analysis. Journal of the American Statistical Association, 97:1090-1098, 2002. (Pubitemid 36136568)
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.460 , pp. 1090-1098
    • Hoff, P.D.1    Raftery, A.E.2    Handcock, M.S.3
  • 7
    • 37549022963 scopus 로고    scopus 로고
    • The Gaussian process latent variable model
    • The University of Sheffield
    • Neil Lawrence. The Gaussian process latent variable model. Technical Report CS-06-03, The University of Sheffield, 2006.
    • (2006) Technical Report CS-06-03
    • Lawrence, N.1
  • 13
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian multinomial probit regression with Gaussian process priors
    • Mark Girolami and Simon Rogers. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18:2006, 2005.
    • (2006) Neural Computation , vol.18 , pp. 2005
    • Girolami, M.1    Rogers, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.