-
5
-
-
33645671934
-
-
Bernoulli
-
Z. D. Bai, J. F. Yao On the convergence of the spectral empirical process of Wigner matrices, Bernoulli, Vol. 11, No. 6 (2005), 1059-1092.
-
(2005)
On the Convergence of the Spectral Empirical Process of Wigner Matrices
, vol.11
, Issue.6
, pp. 1059-1092
-
-
Bai, Z.D.1
Yao, J.F.2
-
6
-
-
0003007394
-
Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix
-
Z. D. Bai, Y. Q. Yin Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix, Ann. Probab.16 (1988) 1729-1741.
-
(1988)
Ann. Probab
, vol.16
, pp. 1729-1741
-
-
Bai, Z.D.1
Yin, Y.Q.2
-
7
-
-
63849341672
-
Central limit theorems for eigenvalues in a spiked population model
-
Z. D. Bai, J.-F Yao Central limit theorems for eigenvalues in a spiked population model, Ann. I. H.P-Prob. et Stat. Vol. 44 No. 3 (2008), 447-474.
-
(2008)
Ann. I. H.P-Prob. Et Stat.
, vol.44
, Issue.3
, pp. 447-474
-
-
Bai, Z.D.1
Yao, J.-F.2
-
8
-
-
77956117036
-
CLT for linear spectral statistics of Wigner matrices
-
Z. D. Bai, X. Wang and W. Zhou CLT for linear spectral statistics of Wigner matrices, Electron. J. Probab. 14 (2009) 2391-2417.
-
(2009)
Electron. J. Probab
, vol.14
, pp. 2391-2417
-
-
Bai, Z.D.1
Wang, X.2
Zhou, W.3
-
9
-
-
27644476898
-
Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
-
J. Baik, G. Ben Arous and S. Péché Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Prob. 33 (2005) 1643-1697.
-
(2005)
Ann. Prob
, vol.33
, pp. 1643-1697
-
-
Baik, J.1
Ben Arous, G.2
Péché, S.3
-
10
-
-
79952708259
-
The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices
-
F Benaych-Georges, R. N. Rao. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227 (2011), no. 1, 494-521.
-
(2011)
Adv. Math.
, vol.227
, Issue.1
, pp. 494-521
-
-
Benaych-Georges, F.1
Rao, R.N.2
-
11
-
-
85037887587
-
Large deviations of extreme eigenvalues of finite rank deformations of deterministic matrices
-
(arXiv:1009.0135)
-
F. Benaych-Georges, A. Guionnet and M. Maida Large deviations of extreme eigenvalues of finite rank deformations of deterministic matrices To appear in Prob. Th. and Rel. Fields (2011) (arXiv:1009.0135)
-
(2011)
Prob. Th. And Rel. Fields
-
-
Benaych-Georges, F.1
Guionnet, A.2
Maida, M.3
-
12
-
-
63049133332
-
The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations
-
M. Capitaine, C. Donati-Martin, D. Féral The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations Ann. Probab. 37 (2009)1-47.
-
(2009)
Ann. Probab.
, vol.37
, pp. 1-47
-
-
Capitaine, M.1
Donati-Martin, C.2
Féral, D.3
-
14
-
-
34247509776
-
Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices
-
P. Deift and D. Gioev Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices, Comm. Pure Appl. Math. 60 (2007) 867-910.
-
(2007)
Comm. Pure Appl. Math
, vol.60
, pp. 867-910
-
-
Deift, P.1
Gioev, D.2
-
15
-
-
77953168459
-
Wegner estimate and level repulsion for Wigner random matrices
-
L. Erdos, B. Schlein, H.T. Yau Wegner estimate and level repulsion for Wigner random matrices, Int. Math. Res. Not., 436-479 (2010).
-
(2010)
Int. Math. Res. Not.
, pp. 436-479
-
-
Erdos, L.1
Schlein, B.2
Yau, H.T.3
-
17
-
-
84875390320
-
The local relaxation flow approach to universality of the local statistics for random matrices
-
L. Erdos, B. Schlein, H.T. Yau and J. Yin The local relaxation flow approach to universality of the local statistics for random matrices To appear in Ann. Inst. H. Poincaré Probab. Statist. (2011)
-
(2011)
Ann. Inst. H. Poincaré Probab. Statist
-
-
Erdos, L.1
Schlein, B.2
Yau, H.T.3
Yin, J.4
-
18
-
-
34248227713
-
The largest eigenvalue of rank one deformation of large Wigner matrices
-
D. Féral and S. Péché The largest eigenvalue of rank one deformation of large Wigner matrices Comm. Math. Phys. 272 (2007)185-228.
-
(2007)
Comm. Math. Phys
, vol.272
, pp. 185-228
-
-
Féral, D.1
Péché, S.2
-
19
-
-
68749084936
-
The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case
-
D. Féral and S. Péché The largest eigenvalues of sample covariance matrices for a spiked population: diagonal case. J. Math. Phys. 50 (2009), no. 7.
-
(2009)
J. Math. Phys
, vol.50
, Issue.7
-
-
Féral, D.1
Péché, S.2
-
20
-
-
0000609652
-
The spectrum edge of random matrix ensembles
-
P Forrester. The spectrum edge of random matrix ensembles, Nuclear Phys. B 402 (1993)709-728.
-
(1993)
Nuclear Phys. B
, vol.402
, pp. 709-728
-
-
Forrester, P.1
-
21
-
-
0036206682
-
Large deviations upper bounds and central limit theorems for band matrices and non-commutative functionals of Gaussian large randommatrices
-
A. Guionnet Large deviations upper bounds and central limit theorems for band matrices and non-commutative functionals of Gaussian large randommatrices, Ann. Inst. H. Poincaré Probab. Statist., 38(2002) 341-384.
-
(2002)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.38
, pp. 341-384
-
-
Guionnet, A.1
-
24
-
-
0038126290
-
A bound on tail probabilities for quadratic forms in independent random variables
-
D. L. Hanson and F. T. Wright A bound on tail probabilities for quadratic forms in independent random variables, Ann. Math. Statist., 42, (1971) 1079-1083.
-
(1971)
Ann. Math. Statist.
, vol.42
, pp. 1079-1083
-
-
Hanson, D.L.1
Wright, F.T.2
-
27
-
-
80053161435
-
-
A. Intarapanich, P Shaw, A. Assawamakin, P Wangkumhang, C. Ngamphiw, K. Chaichoompu, J. Piriyapongsa and S. Tongsima Iterative pruning PCA improves resolution of highly structured populations http://www.biomedcentral.com/1471-2105/10/382
-
Iterative Pruning PCA Improves Resolution of Highly Structured Populations
-
-
Intarapanich, A.1
Shaw, P.2
Assawamakin, A.3
Wangkumhang, P.4
Ngamphiw, C.5
Chaichoompu, K.6
Piriyapongsa, J.7
Tongsima, S.8
-
30
-
-
77149139140
-
Central limit theorem for linear eigenvalue statistics of random matrices with independent entries
-
A. Lytova, L. A. Pastur. Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37(2009) 1778-1840.
-
(2009)
Ann. Probab
, vol.37
, pp. 1778-1840
-
-
Lytova, A.1
Pastur, L.A.2
-
31
-
-
85037906083
-
Norm of polynomials in large random and deterministic matrices
-
To appear in
-
C. Mâle. Norm of polynomials in large random and deterministic matrices To appear in Prob. Th. and Rel. Fields (2011)
-
(2011)
Prob. Th. And Rel. Fields
-
-
Mâle, C.1
-
32
-
-
0000263239
-
Distribution of eigenvalues in certain sets of random matrices
-
V. A. Marcenko, L. A. Pastur. Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.), 72 (114):507-536, 1967.
-
(1967)
Mat. Sb. (N.S.)
, vol.72
, Issue.114
, pp. 507-536
-
-
Marcenko, V.A.1
Pastur, L.A.2
-
33
-
-
85024305944
-
Correlation functions of random matrix ensembles related to classical orthogonal polynomials. III
-
T. Nagao, T. Taro and M. Wadati. Correlation functions of random matrix ensembles related to classical orthogonal polynomials. III, J. Phys. Soc. Japan, 61 (1992) 1910-1918.
-
(1992)
J. Phys. Soc. Japan
, vol.61
, pp. 1910-1918
-
-
Nagao, T.1
Taro, T.2
Wadati, M.3
-
35
-
-
33750560679
-
Limiting laws of linear eigenvalue statistics for Hermitian matrix models
-
L. Pastur Limiting laws of linear eigenvalue statistics for Hermitian matrix models. J. Math. Phys. 47 no. 10, 103-303, 2006.
-
(2006)
J. Math. Phys.
, vol.47
, Issue.10
, pp. 103-303
-
-
Pastur, L.1
-
36
-
-
28144458079
-
The largest eigenvalue of small rank perturbations of Hermitian random matrices
-
S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields, 134, (2006) 127-173.
-
(2006)
Probab. Theory Related Fields
, vol.134
, pp. 127-173
-
-
Péché, S.1
-
37
-
-
59449098080
-
Universality results for the largest eigenvalues of some sample covariance matrix ensembles Probab
-
S. Péché. Universality results for the largest eigenvalues of some sample covariance matrix ensembles Probab. Theory Related Fields 143 481-516, 2009.
-
(2009)
Theory Related Fields
, vol.143
, pp. 481-516
-
-
Péché, S.1
-
39
-
-
28144459476
-
Universality of the edge distribution of eigenvalues of Wigner random matrices with polynomially decaying distributions of entries
-
A. Ruzmaikina Universality of the edge distribution of eigenvalues of Wigner random matrices with polynomially decaying distributions of entries Comm. Math. Phys. 261 (2006)277-296.
-
(2006)
Comm. Math. Phys.
, vol.261
, pp. 277-296
-
-
Ruzmaikina, A.1
-
40
-
-
85037876326
-
-
private communication
-
B. Schlein, private communication (2010)
-
(2010)
-
-
Schlein, B.1
-
41
-
-
0033473406
-
Universality at the edge of the spectrum in Wigner random matrices
-
A. Soshnikov Universality at the edge of the spectrum in Wigner random matrices Comm. Math. Phys. 207 (1999) 697-733.
-
(1999)
Comm. Math. Phys
, vol.207
, pp. 697-733
-
-
Soshnikov, A.1
-
42
-
-
77954624704
-
Universality of local eigenvalue statistics up to the edge
-
T. Tao and V Vu Random Matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 (2010), no. 2, 549-572.
-
(2010)
Comm. Math. Phys
, vol.298
, Issue.2
, pp. 549-572
-
-
Tao, T.1
Random Matrices, V.V.2
-
44
-
-
27644532196
-
Level spacing distribution and Airy kernel
-
C. Tracy, H. Widom, Level spacing distribution and Airy kernel, Commun. Math. Phys. 159 (1994) 151-174.
-
(1994)
Commun. Math. Phys
, vol.159
, pp. 151-174
-
-
Tracy, C.1
Widom, H.2
-
45
-
-
0030545965
-
On orthogonal and symplectic matrix ensembles
-
C. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Commun. Math. Phys. 177(1996), 727-754.
-
(1996)
Commun. Math. Phys
, vol.177
, pp. 727-754
-
-
Tracy, C.1
Widom, H.2
-
46
-
-
69249206641
-
The largest sample eigenvalue distribution in the rank 1 quaternionic spiked model of Wishart ensemble
-
D. Wang The largest sample eigenvalue distribution in the rank 1 quaternionic spiked model of Wishart ensemble, Ann. Probab. 37(2009) 1273-1328.
-
(2009)
Ann. Probab
, vol.37
, pp. 1273-1328
-
-
Wang, D.1
-
47
-
-
70349306388
-
Edge universality for orthogonal ensembles of random matrices
-
M. Shcherbina Edge universality for orthogonal ensembles of random matrices, J. Stat. Phys., 136(2009), 35-50.
-
(2009)
J. Stat. Phys.
, vol.136
, pp. 35-50
-
-
Shcherbina, M.1
|