메뉴 건너뛰기




Volumn , Issue , 2009, Pages 359-366

Interpretation and generalization of score matching

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; MAXIMUM LIKELIHOOD;

EID: 80053159994     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (101)

References (14)
  • 1
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems (with discussion
    • J. Besag. Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society, Series B, 36(2):192-225, 1974.
    • (1974) Journal of the Royal Statistical Society, Series B , vol.36 , Issue.2 , pp. 192-225
    • Besag, J.1
  • 2
    • 0000402056 scopus 로고
    • On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems
    • December
    • D. Brook. On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems. Biometrika, 3/4(51):481-483, December 1964.
    • (1964) Biometrika , vol.3-4 , Issue.51 , pp. 481-483
    • Brook, D.1
  • 3
    • 70349146040 scopus 로고    scopus 로고
    • Learning transformational invariants from natural movies
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
    • Charles Cadieu and Bruno Olshausen. Learning transformational invariants from natural movies. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 209-216. 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 209-216
    • Cadieu, C.1    Olshausen, B.2
  • 5
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 6
    • 22044434800 scopus 로고    scopus 로고
    • Estimation of nonnormalized statistical models using score matching
    • A. Hyvärinen. Estimation of nonnormalized statistical models using score matching. Journal of Machine Learning Research, 6:695-709, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 695-709
    • Hyvärinen, A.1
  • 7
    • 34548644434 scopus 로고    scopus 로고
    • Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables
    • DOI 10.1109/TNN.2007.895819
    • A. Hyvärinen. Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables. IEEE Transactions on Neural Networks, 18(5):1529-1531, 2007. (Pubitemid 47408552)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.5 , pp. 1529-1531
    • Hyvarinen, A.1
  • 8
    • 33750982683 scopus 로고    scopus 로고
    • Some extensions of score matching
    • DOI 10.1016/j.csda.2006.09.003, PII S0167947306003264
    • A. Hyvärinen. Some extensions of score matching. Computational Statistics & Data Analysis, 51:2499-2512, 2007. (Pubitemid 44751259)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.5 , pp. 2499-2512
    • Hyvarinen, A.1
  • 9
    • 57349101724 scopus 로고    scopus 로고
    • Optimal approximation of signal priors
    • A. Hyvärinen. Optimal approximation of signal priors. Neural Computation, 20:3087-3110, 2008.
    • (2008) Neural Computation , vol.20 , pp. 3087-3110
    • Hyvärinen, A.1
  • 10
    • 80053163985 scopus 로고    scopus 로고
    • Estimating markov random field potentials for natural images
    • Urs Köster, Jussi T. Lindgren, and Aapo Hyvärinen. Estimating markov random field potentials for natural images. In ICA, 2009.
    • (2009) ICA
    • Köster, U.1    Lindgren, J.T.2    Hyvärinen, A.3
  • 13
    • 57349139183 scopus 로고    scopus 로고
    • Learning to be Bayesian without supervision
    • B Schölkopf, J Platt, and T Hofmann, editors, Cambridge, MA, May MIT Press
    • M Raphan and E P Simoncelli. Learning to be Bayesian without supervision. In B Schölkopf, J Platt, and T Hofmann, editors, Adv. Neural Information Processing Systems 19, volume 19, Cambridge, MA, May 2007. MIT Press.
    • (2007) Adv. Neural Information Processing Systems 19 , vol.19
    • Raphan, M.1    Simoncelli, E.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.